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And my partner in crime, Oğuzcan... Life is so much more interesting
when I’m by your side. You’re my favourite person to do everything
with!

Kardelen
Janurary 2014

Enschede

viii



A B S T R A C T

A software system is comprised of parts, which interact through shared
interfaces. Certain qualities of integration, such as loose-coupling, re-
quiring minimal changes to the software and fine-grained localisation
of dependencies, have impact on the overall software quality. Current
general-purpose languages do not have features that target these integra-
tion qualities at the instance level, hence they lack expressive power to
define integration-specific code. As a result integration requires invasive
code alterations, tightly coupled components that hinder maintainability
and reuse.

In this thesis, we focus on developing language extensions and frame-
works, which offer a declarative way of defining the elements involved
in the instance level software composition. Our motivation is that non-
intrusive means of integration at the granularity of the instance level has
an impact on the maintainability and the extensibility of the software.
We focused on declarativeness since we want to improve how integra-
tion concerns are expressed in the implementation.

We particularly focus on two challenges specific to the instance-level
integration step; the two contributions proposed as a solution to each
of these challenges both present declarative approaches for implement-
ing specific concerns. These concerns are; 1. selecting objects based on
how they are used in a system and, 2. non-intrusive implementation and
injection of adapters.

The first challenge is the difficulty of selecting objects based on other
criteria than the type system. This is important during integration since,
independent of their type, objects can become relevant to a component
when they participate in specific events. Such events mark the phases
in the life-cycle of objects. The phase in which an object currently is, af-
fects how it is handled in an application; however phase shifts are often
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implicit. Selecting objects according to such phase shifts results in scat-
tered and tangled code. To handle these problems, we introduce a novel
aspect-oriented concept, called instance pointcuts, for maintaining sets
that contain objects with a specified usage history. Specifics are provided
in terms of pointcut-like declarations selecting events in the life-cycle of
objects. Instance pointcuts can be reused, by refining their selection crite-
ria, e.g., by restricting the scope of an existing instance pointcut; and they
can be composed, e.g., by set operations. These features make instance
pointcuts easy to evolve according to new requirements. The instance
pointcuts approach adds a new dimension to modularity by providing a
fine-grained mechanism and a declarative syntax to create and maintain
phase-specific object sets.

The second challenge we have tackled is establishing common inter-
faces between instances while maintaining loose coupling. To this end
we have created an adaptation framework, called zamk, which unites
dependency injection with under-the-hood adaptation logic. Due to limi-
tations we have identified in the traditional adapter pattern, such as an
increased number of dependencies and implementation challenges due
to dependence on type inheritance, we have created the concept of con-
verters, which are annotated classes that adhere to a specific structure.
Converter classes do not have to inherit from other classes to implement
the adaptation logic. They are defined by the user and managed by the
zamk runtime; consequently the only dependency that needs to be in-
troduced during integration is calls to the zamk API. zamk comes with
its own dependency injection mechanism that is used with a designated
domain-specific language called Gluer. The dependency injection logic is
intertwined with the adaptation logic which queries a registry of convert-
ers to perform automated adaptation between two types. We automate
the adaptation process by exploiting the type hierarchies and provide
checks and context-relevant messages for correct integration. As a result
the zamk framework provides a non-intrusive approach for adapting and
binding software, which supports code reuse, software maintainability
and evolution.

ii



C O N T E N T S

i introduction 1

1 overview 3

1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Aspect-Oriented Programming (AOP) . . . . . . . . 5

1.1.2 Dependency Injection (DI) . . . . . . . . . . . . . . . 6

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 motivation and context 11

2.1 Object interaction . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Object-level modularity . . . . . . . . . . . . . . . . . . . . 12

2.3 Illustrative Case Study . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Scenario 1: Integrating the new scheduler . . . . . . 18

2.3.3 Scenario 2: Integrating the Scheduling Algorithm . 20

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ii instance pointcuts 23

3 instance pointcuts : syntax and semantics 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Example Architecture . . . . . . . . . . . . . . . . . 29

3.2.2 Unanticipated Extensions . . . . . . . . . . . . . . . 29

3.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Instance Pointcuts . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Basic Structure and Properties . . . . . . . . . . . . 36

3.4.2 Add/Remove Expressions . . . . . . . . . . . . . . . 37

3.4.3 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.4 Refinement and Composition . . . . . . . . . . . . . 40

iii



contents

3.4.4.1 Referencing and Type Refinement . . . . . 40

3.4.4.2 Instance Pointcut Expression Refinement 41

3.4.4.3 Instance Pointcut Composition . . . . . . 43

3.4.5 Using Instance Pointcuts . . . . . . . . . . . . . . . . 45

3.4.5.1 Set Access . . . . . . . . . . . . . . . . . . . 46

3.4.5.2 Set Monitoring . . . . . . . . . . . . . . . . 46

3.5 Compilation of Instance Pointcuts . . . . . . . . . . . . . . 47

3.5.1 Non-Composite Instance Pointcuts . . . . . . . . . . 50

3.5.2 Composite Instance Pointcuts . . . . . . . . . . . . . 54

3.5.3 Compiling Plain AspectJ constructs . . . . . . . . . 56

4 instance pointcuts : discussion 59

4.1 Applying Instance Pointcuts for Program Comprehension 59

4.1.1 Example Walkthrough . . . . . . . . . . . . . . . . . 61

4.1.1.1 Scenario 1 . . . . . . . . . . . . . . . . . . . 63

4.1.1.2 Scenario 2 . . . . . . . . . . . . . . . . . . . 64

4.1.1.3 Scenario 3 . . . . . . . . . . . . . . . . . . . 65

4.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Code Quality . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Performance Evaluation . . . . . . . . . . . . . . . . 70

4.2.3 Enabled Analyses . . . . . . . . . . . . . . . . . . . . 74

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

iii zamk: an adapter-aware dependency injection frame-
work 81

5 zamk framework 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . 86

5.3 The zamk Framework . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Using Conversions Instead of Adapters . . . . . . . 96

5.3.2 Compile-time . . . . . . . . . . . . . . . . . . . . . . 98

5.3.2.1 Gluer DSL . . . . . . . . . . . . . . . . . . 99

iv



contents

5.3.2.2 User-defined Converters . . . . . . . . . . 101

5.3.2.3 Conversion Registry . . . . . . . . . . . . . 104

5.3.2.4 Code Generation . . . . . . . . . . . . . . . 108

5.3.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.3.1 Initialization . . . . . . . . . . . . . . . . . 114

5.3.3.2 zamk Conversion Requests . . . . . . . . . 114

5.3.3.3 Finding a Conversion . . . . . . . . . . . . 116

5.3.3.4 Target Object Creation and Retrieval . . . 121

5.3.3.5 Object Synchronisation . . . . . . . . . . . 122

5.3.3.6 Runtime API . . . . . . . . . . . . . . . . . 122

6 zamk: discussion 125

6.1 Applicability of zamk . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

iv final remarks 133

7 conclusion and future work 135

7.1 Instance Pointcuts . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 zamk: An Adapter-Aware Dependency Injection Framework 137

bibliography 139

v



L I S T O F F I G U R E S

Figure 2.1 Composition Filters object model . . . . . . . . . . 14

Figure 2.2 The static structure of the legacy printer . . . . . . 16

Figure 2.3 Sequence Diagram of scheduler’s availability re-
quest . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.4 The static structure of the scheduling library . . . 18

Figure 2.5 The static structure of the scheduling algorithms
library . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.6 Scenario 1: Integrating the new scheduler . . . . . 20

Figure 2.7 Scenario 2: Integrating the scheduling algorithm . 21

Figure 3.1 Part of an online shop application . . . . . . . . . 29

Figure 3.2 Grammar definition for instance pointcuts . . . . 36

Figure 3.3 Syntax for instance pointcut composition . . . . . 44

Figure 3.4 An example to illustrate composition’s effect on
types . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.5 Meta-model of a Specialization in ALIA4J. . . . . 51

Figure 4.1 The Instance Pointcuts View . . . . . . . . . . . . . 62

Figure 4.2 A highlighted instance pointcut. . . . . . . . . . . 62

Figure 4.3 Another example of an instance pointcut definition. 62

Figure 4.4 Breakpoint properties using an instance pointcut. 65

Figure 4.5 Setting watchpoints for instance breakpoint changes. 66

Figure 4.6 Benchmark results for adding the same object . . 72

Figure 4.7 Benchmark results for adding unique objects . . . 73

Figure 4.8 Benchmark results for removing the same object . 73

Figure 4.9 Benchmark results for removing unique objects . 74

Figure 5.1 UML diagram for the two components . . . . . . . 86

Figure 5.2 The diagram of the object adapter and the corre-
sponding Java implementation . . . . . . . . . . . 88

vi



Figure 5.3 The diagram of the object adapter and the corre-
sponding Java implementation . . . . . . . . . . . 89

Figure 5.4 An overview of the zamk framework . . . . . . . . 93

Figure 5.5 The compile-time workflow and dataflow of zamk 99

Figure 5.6 The process triggered by a conversion request . . 113

Figure 5.7 Two type hierarchies for representing animals and
conversions between them . . . . . . . . . . . . . . 117

L I S T O F TA B L E S

Table 5.1 The type distances of conversion’s source–target
types to the source–target types given in the con-
version request getConvertedValue(mammal, Warm-
Blooded.class) . . . . . . . . . . . . . . . . . . . . . 117

L I S T I N G S

Listing 3.1 A Java implementation of discount alert concern . 30

Listing 3.2 An AspectJ implementation of discount alert con-
cern . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Listing 3.3 A basic instance pointcut declaration with add
and remove expressions . . . . . . . . . . . . . . . 38

Listing 3.4 An instance pointcut utilizing multiset property . 39

Listing 3.5 A type refined pointcut . . . . . . . . . . . . . . . . 40

vii



Listings

Listing 3.6 Expression refinement of surpriseDiscount (List-
ing 3.3) instance pointcut . . . . . . . . . . . . . . . 42

Listing 3.7 Equivalent add expression of the expression re-
finement shown in Listing 3.6 . . . . . . . . . . . . 42

Listing 3.8 Type refinement by expression refinement . . . . . 42

Listing 3.9 An instance pointcut for out of stock products . . 45

Listing 3.10 Calculate a damage estimate for out of stock prod-
ucts . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Listing 3.11 Set monitoring pointcut used to notify vendors . . 47

Listing 3.12 Template of generated code for instance set man-
agement. . . . . . . . . . . . . . . . . . . . . . . . . 49

Listing 3.13 Example of a plain instance pointcut . . . . . . . . 51

Listing 3.14 Template for creating the advanced dispatching
model for the add_before expression . . . . . . . . 51

Listing 3.15 Template for creating the advanced dispatching
model for the type-refined instance pointcut . . . 52

Listing 3.16 Generated code for creating the advanced dispatch-
ing model for the add/before pointcut of the in-
stance pointcut created with expression refinement 53

Listing 3.17 Deployment of the bookkeeping for an instance
pointcut. . . . . . . . . . . . . . . . . . . . . . . . . 54

Listing 3.18 The update method generated from a composi-
tion expression . . . . . . . . . . . . . . . . . . . . . 55

Listing 4.1 The piece of code that is repeated throughout the
fragment classes . . . . . . . . . . . . . . . . . . . . 68

Listing 4.2 Organisation listener bookkeeping with instance
pointcuts . . . . . . . . . . . . . . . . . . . . . . . . 69

Listing 4.3 Adding the same object before and after the same
join-point . . . . . . . . . . . . . . . . . . . . . . . . 76

Listing 5.1 Implementation . . . . . . . . . . . . . . . . . . . . 88

Listing 5.2 Implementation . . . . . . . . . . . . . . . . . . . . 89

Listing 5.3 The integration of Polar coordinates . . . . . . . . 90

viii



Listing 5.4 An object adapter defined as a converter for con-
verting a Cartesian object to a Polar object . . . . . 97

Listing 5.5 A converter defined for converting a Cartesian ob-
ject to a Polar object . . . . . . . . . . . . . . . . . . 103

Listing 5.6 The XML code for a registry item . . . . . . . . . . 108

Listing 5.7 The abstract reusable aspect ZamkAbstractAspect . 109

Listing 5.8 The code generation template for producing an
adaptation-specific aspect . . . . . . . . . . . . . . 110

Listing 5.9 The aspect generated for the Cartesian to Polar
converter . . . . . . . . . . . . . . . . . . . . . . . . 111

Listing 5.10 The aspect generated for the Cartesian to Polar
two-way converter . . . . . . . . . . . . . . . . . . . 112

Listing 5.11 The invokeConversion method which reflectively
invokes the convert method of a given conversion 121

Listing 5.12 Using zamk API in the implementation . . . . . . . 123

Listing 6.1 The query script for Boa. . . . . . . . . . . . . . . . 125

Listing 6.2 TimeLog registering its adapters. . . . . . . . . . . 127

L I S T O F A C R O N Y M S

oop Object-Oriented Programming

oo Object-Oriented

aop Aspect-Oriented Programming

ao Aspect-Oriented

cf Composition Filters

di Dependency Injection

ix





Part I

I N T R O D U C T I O N

In this part we define the scope of this thesis and describe
problem statements in detail. This thesis focuses on the prob-
lems that arise due to lack of modularity in the specifica-
tion of related objects and missing support for object-level
interactions. We tackle these problems with two novel ap-
proaches. The first problem is related to the type-based cate-
gorisation of objects in current programming languages. The
second problem we present is the insufficient support for
non-intrusively implementing and injecting object adapters.
This part also discusses a small case study, which was our
source of inspiration to start investigating the problems ad-
dressed in this thesis.





1
O V E RV I E W

Complex software consists of many parts which are connected to each
other to create a functional unit. Often, we would like to reuse soft-
ware parts to create reliable software in a fast and a cost effective man-
ner [Kru92]. Software reuse requires establishing connections between
these parts [Szy02]; which may not share a common interface to com-
municate due to, for example, evolution of software with unplanned
functionality, development of software parts independently of each other
and/or introduction of design mistakes.

If software must be extended with unanticipated functionality, reuse is
even more difficult. In such cases integrating this new functionality may
require invasive code alterations. First, the new functionality may be in
need of data which has not been made accessible by the software. In
order to allow access, the software must be changed to expose this data.
However, it may not be desirable (e.g, for architectural reasons) or even
possible (e.g. source code is not available) to change the implementation.
Second, since the parts rely on interfaces for interacting with each other,
the incompatibility of interfaces causes an integration problem as well.
To remedy interface incompatibility, developers can introduce new code
to the software which must be maintained in case of subsequent software
evolutions. Some approaches rely on immutable interfaces to protect in-
tegration code from software evolution. However this creates bottlenecks
in terms of exposed features; when the behaviour of a component is ex-
tended, it almost always requires interface extensions [Spa00].
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overview

Since object-oriented languages [RBL+
90] are very popular, from now

on by means of software parts, we will refer to objects as in Object-
Oriented Programming (OOP), unless stated otherwise. In OOP, objects
are instances of their classes. The information which indicates to which
class an object belongs is called the type information. Classes have an
interface, which is a contract between a class and the outside world.
Objects can only expose their state through their interfaces. In order to
obtain information about an object, one has to use its interface. For two
objects to communicate, they should have compatible interfaces. One of
the ways to provide compatibility between interfaces is to introduce an
intermediate type, which is called an adapter. Much like a real-world
power adapter, the adapter types convert the interface of one type to the
interface of the other.

From the above discussion, we identify two specific integration chal-
lenges for Object-Oriented (OO) languages:

(a) Proper integration of objects within a program may require objects
to access each other’s internal data values. Current languages only
provide features to allow objects query on other objects based on
their types, however it is also important to select objects based on
how they are used in an application.

(b) When integrating new functionality into existing software, the instance-
level integration code tends to be ad-hoc and fragile. Such code often
consists of a collection of adapters and references to these adapters
from different software parts. This type of integration code is not
robust against software evolution.

In this thesis we improve on these challenges; our solutions in par-
ticular focus on non-intrusive integration mechanisms. For the first chal-
lenge we introduce “instance pointcuts”, which is an aspect-oriented lan-
guage extension to select objects based on their usage history. Instance
pointcuts provide means to categorise objects according to how they are
used in an application.

4



1.1 state of the art

For the second challenge we have developed an adaptation-aware de-
pendency injection framework, called zamk1, which localises the integra-
tion code and introduces a lightweight way of implementing adaptations
between incompatible interfaces as structures which we call converters.

1.1 state of the art

The contributions presented in this thesis focus on non-intrusiveness.
Two technologies that aim at mitigating the two identified challenges are
Aspect-Oriented Programming (AOP) and Dependency Injection (DI);
we discuss these in the following.

1.1.1 Aspect-Oriented Programming (AOP)

Separation of concerns [Dij82] is possibly the most important principle
of software engineering; it is the basis for many software design practices
such as modularity, reusability and maintenance. Separation of concerns
is a design principle which modularises software into separate parts,
each of which address a particular problem [Par72]. Ideally a concern
should be implemented in a single unit, however in complex software
there are various concerns which are hard to modularise with the lan-
guage concepts provided by object-oriented programming. The concerns
which cannot be contained in a unit crosscut other concerns; a crosscut-
ting concern is an extra concern which disrupts the implementation of
the main concern of a program. A crosscutting concern can be tangled
and scattered. Tangling occurs when the crosscutting concern is imple-
mented together with another concern in a compilation unit. Scattering
occurs when a single concern is implemented in parts among many com-
pilation units.

AOP is a paradigm which aims to improve separation of concerns by
modularising crosscutting concerns in separate modules called aspects.

1 (Turkish) A type of plant gum which has sticky or adhesive quality.
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Aspect-Oriented (AO) languages provide mechanisms for intercepting
calls that are made in an application. Using the context information in
an intercepted call, aspects define additional operations to be executed
in the vicinity of the call; these operations are encapsulated in the body
of an advice.

In the literature there are numerous studies which bring AOP and
integration together. The reason is that AOP provides another dimension
of modularisation, which is crucial for the non-invasive composition of
software [TOHSJ99].

In terms of integration, an interesting property of CaesarJ [AGMO06,
AGMO13] is having wrappers as a first-class language feature. Wrappers
are a built-in adaptation/composition mechanism, whose state is con-
tained in the wrapee object. Since CaesarJ uses AspectJ pointcut mecha-
nisms for selecting wrapees, it does not provide a modular mechanism
for maintaining wrapee collections. JAsCo [SVJ03, SV13] is another AO-
language that is tailored for component-based development. JAsCo intro-
duces aspect beans and connectors. Connectors can deploy hooks (similar to
advices) depending on the context. By separating the aspect implemen-
tation from aspect binding, JAsCo provides improved expressiveness
for integrating components. JAsCo does not provide language abstrac-
tions for selecting objects based on their use either. Aspectual Collabora-
tions [LLO03], which builds on pluggable adapters [MSUL99] is another
study which exploits aspect-orientation for integration of software parts.
Using Aspectual Collaborations, one is able to define connections be-
tween objects by declaring dependencies and creating adapters.

1.1.2 Dependency Injection (DI)

Dependency Injection (DI) [Fow04], also referred to as Inversion of Con-
trol, is a way of establishing loose-coupling between software parts. A
type is said to have a dependency to another type, if that type uses that
other type. DI eliminates dependencies to specific types; the underlying
implementation of a field can be initialised with different implementa-
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tions of the same abstraction. The module which is responsible for inject-
ing dependencies is called an injector. Injectors localise the configuration
code for the software therefore they make it possible to change the con-
figuration of the software without changing the dependent classes. DI
is also beneficial for testing [MFC01]. Since we can inject dependencies
to components, we can also inject mock implementations with various
configurations to efficiently test software.

There are multiple ways to perform dependency injection; these are
constructor injection, setter injection and interface injection. In construc-
tor injection, the dependent field is populated in the constructor, by pass-
ing the specific object as a constructor parameter. In setter injection, the
field is populated by calling the setter of that field with the injected value.
In interface injection, the injection points are determined by finding the
implementors of the declared injection interfaces.

DI is widely used in software development today. Google Guice [Goo13]
is a light weight dependency injection framework, which uses annota-
tions to mark the injection points. Developers configure the interface
and the corresponding class binding using the Guice API; these bind-
ings represent the configuration of the software. The problem with us-
ing framework-specific annotations is the coupling of the code with a
specific framework. Spring Framework [JHAT09, Fra13] is a platform for
developing enterprise applications, which also relies on DI for composi-
tion and configuration. The injection points can be declared with anno-
tations or can be defined in XML as a portable format. A disadvantage
of using the XML format is the lack of compile-time checking. PicoCon-
tainer [pic13] is one of the earliest DI frameworks and it does not require
annotations or external files. Instead the developer must register the in-
jection points and injectibles to the container; the PicoContainer handles
the injection automatically.
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1.2 approach

Modularisation of objects based on their participation in certain interesting
events

In Chapter 3 we look at component integration at the instance level. Soft-
ware parts communicate data using objects; however an object may not
become relevant until it participates in a certain event. In the control
flow of an application such events can be implicit, e.g, the object may be
passed as an argument. Also events may not change the object hence the
occurrence of the event is not reflected in the object state. So the static in-
formation about objects, such as its type is not always sufficient to select
relevant ones. However, the event information may be scattered around
the application, requiring invasive code alterations to identify relevant
objects; so the object selection concern becomes crosscutting.

In Chapter 3 we describe a new AO-language construct for modular-
ising object selection. This construct, called instance pointcuts, reifies a
set of objects of the same type hierarchy. These objects are selected using
pointcut like notation, according to the events they participate in. With
instance pointcuts we can create a module as a set of objects, which are
in a relevant period in their life-cycle, where the beginning and the end
of a period is marked by events. Instance pointcuts are composable by
set operations and they can be reused to create other instance pointcuts.

In Chapter 3 we discuss instance pointcuts in detail starting with a
motivating example and then moving onto instance pointcuts’ syntax,
semantics and possible applications. We also explain our modular code
generation approach in detail.

A dependency injection framework with under-the-hood adaptation logic for
binding components

In Chapter 5 we explore interface incompatibility and instance level de-
pendencies in software composition. Objects require a shared interface
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to interoperate, which is usually not present when integrating them later
in the life-cycle of a software. This requires adapting interfaces of objects
so that they can communicate. Another aspect of object communication
is dependencies; explicit dependencies to concrete types result in tightly
coupled software. When these two issues come together, object integra-
tion requires creating dependency to an adapter object.

In Chapter 5 we present our contribution, the zamk framework, which
improves the integration process of externally developed software. For
this framework we have developed an external DI language called Gluer.
This language is used in conjunction with converters, which are reinter-
preted adapters used for converting objects of one type to another type.
Gluer is a converter-aware language meaning it can convert injected ob-
jects into other types before the injection, given the target injection field
is of an incompatible type. Using zamk framework developers are able
to separate the concerns of the software integration into adaptation and
gluing.

organisation of the thesis

In Chapter 2 we set the focus of this thesis and explain problems of
object-level modularity and interaction by means of related work and
personal experience. In this chapter we present a conceptual printing
application, which was developed as a part of a project. We present a
scenario where a scheduler software of a printing machine should be
replaced and evolved. While explaining the scenario we point out the
problems which were discussed at the beginning of the chapter.

In Chapter 3 and Chapter 4 we present the instance pointcuts ap-
proach which localises the object selection concern in a modular way.

In Chapter 5 and Chapter 6 we present our adapter-aware dependency
injection framework zamk, which performs automatic adaptation before
injecting values to target injection points.

In the final chapter, Chapter 7, we summarise our contributions and
elaborate on future work.
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2
M O T I VAT I O N A N D C O N T E X T

The key element of object-oriented programming are objects; objects con-
sist of a state which is stored in fields and a behavior which is exposed
through methods. As software systems became more complex, features
offered by Object-Oriented Programming (OOP) proved to be insuffi-
cient and led to the design of new programming paradigms such as
Aspect-Oriented Programming (AOP) (briefly introduced in Chapter 1).
This thesis focuses on the problems regarding object-level modularity
and interaction. These two qualities play a central role in software evo-
lution, where expressive power over accessing and using the data in the
legacy software is of crucial importance. We particularly specialise on
unplanned software evolution, where the implementation of unanticipated
concerns is required. Therefore we focus on developing non-intrusive ap-
proaches for supporting the implementation of such concerns.

2.1 object interaction

When new functionality is required in a software system, it is often
cheaper to re-use existing components which provide this functional-
ity [BCK03]. Component-based approaches for integrating components
uniformly and efficiently, such as Component Models [LW07] and Com-
ponent Frameworks [Vin97, RB10], offer an architectural solution. These
techniques are therefore suitable for enterprise software and are usually
adopted during design time.
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Integrating new features to the software after its release has differ-
ent requirements. Such software has legacy code and it is usually risky
to make alterations to this code due to the possible introduction of
bugs [Leh96]. In this context, a potentially problematic software evo-
lution scenario is the integration of unanticipated functionality. This is
because the legacy software may not provide the correct interfaces or
contain the relevant dependencies to host this functionality. In addition,
using third-party software comes with its own problems; third-party
software evolution cannot be controlled and its integration requires fur-
ther maintenance efforts [BA99, YBB99].

Interface compatibility can be established by using the adapter pat-
tern [GHJV95]. Adapters can be used to plug in software parts into a
software system, hence facilitating software reuse. However, the tradi-
tional adapter pattern has some drawbacks. First, the adapter type is
an additional type that is introduced to the system and to the type hi-
erarchy of the existing classes. Therefore using adapters may introduce
unintended complexity to the software. Second, instantiating the adapter
objects and adding references to these objects introduce new dependen-
cies in the software. These observations led us to the conclusion that we
need an approach which provides interface compatibility that does not
complicate the type hierarchies and allows creating dependencies in a
non-intrusive manner.

2.2 object-level modularity

In OOP objects are categorised by their types. Type-based categorisation
provides limited perspective on object roles; this was observed in early
work on OOP [Kri96]. A statement that is added to a class definition
affects all the instance of that class. AOP languages also operate with
the type criteria; statements in an aspect will affect all the instances of
the advised type. Rajan and Sullivan also point out a similar problem
in [RS03b].
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Categorising objects based on criteria other than their type and pro-
viding object-level advice has been the subject of many studies. In As-
pectS [Hir03], Hirschfeld proposes an AO-language which provides a
more granular way of selecting instances of particular types, for exam-
ple, by checking if a type implements a certain method. Although this
approach provides more granularity, it cannot select objects based on
events. In Eos [RS03a] a new AO with a rich join-point model to allow
object-level advising is proposed. In CaesarJ [AGMO06], wrappers are
applied to particular objects, which are selected by AspectJ pointcuts. In
[SMU+

06], Sakurai et al. also recognised the importance of associating
objects for object-level advice and introduced association aspects. In this
work an aspect is declared perobject and with associate method aspect
are instantiated to objects. This is limiting since the developer is not flex-
ible in associating objects with events other than a call to the associate

method.
Composition Filters (CF) [AWB+

94, BA01a] provide a different ap-
proach by presenting a new object model (Figure 2.1, taken from
[BNGA04]). In composition filters object model, there is an inner and an
outer layer. The inner layer is a plain object which is referred to as kernel
object, and the outer layer that wraps that object is called the interface
part. In CF, filters are superimposed on objects which filter the received
and sent messages. This kind of control over objects inherently provides
mechanisms for object-level advising. Since composition filters are super-
imposed per object, they do not provide a way to select a collection of
objects.

So far we have established that object-level advising requires means
to select relevant objects; in current languages this is supported through
the type system (with the exception of association aspects [SMU+

06],
which use the calling of the associate as the method for selection). In
this thesis we are interested in non-type based modularisation of a set
of objects because of its value in software evolution scenarios. The type
information alone does not give enough information about an object’s
role or use in the application.
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Figure 2.1: Composition Filters object model

All of the work mentioned so far either offer finer granularity in se-
lecting objects thorough richer pointcut declarations or mention the im-
portance of object-level advising, but do not propose an object selection
mechanism which is reusable. These studies focus on join-point rich-
ness, which is important yet is not enough. This observation led us to
the following problem statement: selecting objects according to the roles
they play in an application is not declaratively supported by current
languages, and this selection concern is not supported as a reusable lan-
guage construct.
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2.3 illustrative case study

In a previous research project 1 we were presented with the problem of
evolving the scheduling2 component of a heavy duty printing machine.
In a printer the timing of the physical printing tasks has the utmost im-
portance; which led the developers to implement a conservative sched-
uler. With further advances in their hardware, this scheduler proved to
be a bottleneck for performance. They indicated that the new scheduling
software must be able to use multiple scheduling strategies and must be
able to handle print jobs in a more efficient way according to the re-
sources of the printer.

The illustrative example we present in this section is inspired by this
industrial case study; we use this example to elaborate on the software
composition problems we have presented so far. The details of the actual
case study can be seen in [HdRB+

13].

2.3.1 Problem Setting

Assume that a scheduling library is adopted for implementing the new
scheduler. This library contains abstractions for scheduling concepts like
resources, demands, tasks etc. Another library, which contains various
scheduling algorithms, is also selected to be used with the scheduling
library.

In this problem setting we are confronted with the following chal-
lenges:

• Adapting the legacy printer software to work with the new schedul-
ing library.

• Establishing dependencies between existing software and the new
scheduler.

1 See http://www.esi.nl/octopus/
2 Scheduling is the process of allocating resources to jobs over a period of time while optimising

one or more objectives [Bru01].
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Figure 2.2: The static structure of the legacy printer

• Extracting task and resource data to be used by the scheduling
algorithms library.

Legacy Software

The legacy class structure of the printing software can be seen in Fig-
ure 2.2. Each print job that is sent is a collection of sheets of paper, there-
fore the scheduler component schedules sheets. The scheduler asks the
engine components to find an available time slot for scheduling the next
sheet (Figure 2.3). Each engine component contains its own schedule
information; by asking the first engine component, tray, the scheduler
triggers a sequence of messages. Each engine component forwards the
availability request to the next one. This schedule is later used by the en-
gine control to execute the actions in a timely fashion to print a sheet of
paper. In the printer, a sheet of paper has a specific path it should follow
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Figure 2.3: Sequence Diagram of scheduler’s availability request

to be printed on; it is first separated from the tray, then it is heated to get
to the optimal temperature for printing and finally in the fuse the sheet
is sprayed with ink.

Scheduling Library

The scheduling library has its own static structure for implementing a
scheduler (Figure 2.4). In this structure, the scheduler has references to
available resources in the system. Each task has a specific resource de-
mand; this demand is used to schedule these tasks. Once a schedule is
calculated, it is communicated through the SchedulingInfo interface. In
this scheduling library it is possible to attach external scheduling algo-
rithms, given that they implement the SchedulingAlgorithm interface the
scheduler component expects.

Notice that the scheduler structure this library imposes is different
than the legacy structure shown in Figure 2.2. In the library structure all
the information about scheduling is centralised in the scheduler compo-
nent. In the legacy structure the engine components have the scheduling
information and they share this information with the scheduler through
method calls.
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Figure 2.4: The static structure of the scheduling library

Scheduling Algorithms Library

The scheduling algorithm library expects a “scheduling problem” as
input. Then the chosen scheduling algorithm, also taking the current
schedule into account, outputs a solution (i.e a schedule) to the given
scheduling problem. The scheduling problem is defined in terms of the
↵ | � | � notation defined in [GLLRK77]; these are the machine environ-
ment, task characteristics and the objective function. The static structure
of the required interfaces to use this library can be seen in Figure 2.5.

In order to use this scheduling algorithms library, we must make the
information needed explicit to model the scheduling problem at hand.

2.3.2 Scenario 1: Integrating the new scheduler

In this scenario we discuss the steps involved in integrating the new
scheduler component to the legacy system. Note that this scenario does
not include the integration of the scheduling algorithm. In Figure 2.6,
we show a possible static structure after the integration. The existing
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Figure 2.5: The static structure of the scheduling algorithms library

structure, EngineComponent and Sheet are adapted to Resource and Task re-
spectively in order to be used by the new scheduler. The PrintJob legacy
class now implements the interface TaskInterface of the scheduling li-
brary, which is implemented to convert print jobs to multiple tasks. In
the new structure, each sheet of paper is separated into three tasks that
correspond to each of the resources; tray separation task, heating task
and fusing task. Each of these tasks demands a specific resource, which
can be deduced from their naming. For brevity we have left these struc-
tures out of the figure. The class which is responsible for executing the
tasks for each engine component now uses the interface SchedulingInfo

to obtain the schedule of the tasks. In this implementation the individual
engine components are not responsible for communicating scheduling
information anymore; all of that information is centralised in the new
scheduler component.

Even in this simplistic view, we had to introduce two new types (adapters),
changed the type hierarchy of the legacy system and altered the de-
pendencies in multiple classes. Also, this view assumes that there is a
one-to-one mapping between the adapted types, however this may not
always be the case. The adaptation may require other information than
the one provided by the legacy objects. Another potential problem is
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Figure 2.6: Scenario 1: Integrating the new scheduler

the injection of the adapter instances. The EngineControl class, which is
the manager for the scheduler and engine component objects, will be re-
sponsible for creating the adapters and passing them on to the relevant
objects. These challenges are summarized in our problem statement on
object interaction (Section 2.1).

2.3.3 Scenario 2: Integrating the Scheduling Algorithm

In Figure 2.7 we show the integration of the scheduling algorithm with
the new scheduler. As we have stated at the beginning of this case study,
we would like to support multiple scheduling algorithms according to
the state of the printer. For example, if the printer is being operated in
an especially cold room, the heating operation may take longer. In this
case the printer may decide to prioritise print jobs that use lighter paper,
which is easier to heat. Another example is when a finisher component
is attached to the printer, in order to bind or staple the sheets together;

20



2.3 illustrative case study

Figure 2.7: Scenario 2: Integrating the scheduling algorithm

this components may add a latency to the scheduling of the subsequent
sheets to be printed.

In order to support multiple policies we created two classes which
extend class SchedulingAlgorithm of the algorithms library. Each of these
classes define a different scheduling problem, which should be solved
by the corresponding scheduling algorithm.

In this scenario, the difficulty is to access the information needed by
the scheduling algorithms and to switch between them. It is possible
that we may need to use different scheduling strategies for a batch of
sheets due to resource changes. The interesting events that will enable
us to choose such sheets may be implicit in the system software. Making
these events explicit can increase the number of dependencies and code
alterations of the legacy software. This scenario shows the difficulty of
non-intrusively selecting objects, thus modularizing them with a criteria
other than their type.
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2.4 conclusion

This chapter has defined the context of this thesis by referring to simi-
lar challenges that are identified in the literature. Then, by referring to
an industrial case study we have shown how these problems can arise
in systems. In the next two chapters we show our research on how to
tackle the problems we have identified in this thesis. Our focus on non-
intrusiveness is reflected in our approaches; our aim is to prevent in-
vasive code alterations when integration challenges, like the ones listed
above, arise.
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Part II

I N S TA N C E P O I N T C U T S

In the life-cycle of objects there are different phases. The
phase in which an object currently is, affects how it is han-
dled in an application; however, phase shifts are often im-
plicit. Selecting objects according to such phase shifts results
in scattered and tangled code. In this part we introduce a
new kind of pointcut, called instance pointcut, for maintain-
ing sets that contain objects with a specified usage history.
Specifics are provided in terms of pointcut-like declarations,
selecting events in the life-cycle of objects. Instance pointcuts
can be reused, by refining their selection criteria, e.g., by re-
stricting the scope of an existing instance pointcut; and they
can be composed, e.g., by set operations. These features make
instance pointcuts easy to evolve according to new require-
ments. Our approach improves modularity by providing a
fine-grained mechanism and a declarative syntax to create
and maintain phase-specific object sets.





3
I N S TA N C E P O I N T C U T S : S Y N TA X A N D S E M A N T I C S

In the previous part we have stated the importance of flexibly selecting
objects according to their usage history. In this chapter we expand on this
problem statement and present our approach which tackles the defined
problems.

3.1 introduction

In Object-Oriented Programming (OOP), the encapsulated state and the
provided behaviour of objects is dictated by their type. Nevertheless,
often objects of the same type need to be treated differently. For example,
consider a security-enabled system with a type for users. The treatment
of a user object depends on the user’s privileges and possibly also on
the past execution: we may want to reduce the privileges when the user
did not change the password for a while, or privileges are added or
withdrawn at runtime in other ways.

Software design patterns [GHJV95] are another popular, more general
example for dynamically varying the treatment of objects. Several design
patterns define roles for objects, which can be assigned or removed at
runtime, and the roles determine how an object is handled. However,
while the pattern localises the handling of object roles, the assignment
of roles is usually scattered over multiple source modules. As example,
consider the observer pattern. To assign the role of being observed to a
subject, an observer must be added to its observer list. The code for adding
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observers is generally not well localised. Other similar examples are the
adapter, decorator, or proxy patterns.

More generally, we can say that objects have a life-cycle and we some-
times need to handle objects according to the life-cycle phase they are
currently in. Often the shift from one life-cycle phase to another is implic-
itly marked by events, e.g., passing an object from one client to another.
We claim that to improve the modularity of source code, a declarative
definition of relevant object life-cycle phases is necessary. Furthermore, it
must be possible to reify the set of objects that currently are in a specified
life-cycle phase to consider this information when handling an object.
Grouping objects according to criteria which cannot be directly accessed
through programming language constructs — such as which class they
were initialised in or which method they were passed to as an argument
requires invasive insertion of bookkeeping code.

Aspect-Oriented Programming (AOP) can be applied to separate this
bookkeeping code from the business logic of the program. But in AOP,
pointcuts select sets of so-called join points which are points in time dur-
ing the execution of the program. Current aspect-oriented languages do
not support a declarative specification of the objects belonging to a life-
cycle phase; instead an imperative implementation, typically following the
same pattern, is required for collecting those objects.

A consequence of such an imperative solution is reduced readability
and maintainability due to scattering, tangling and boilerplate code. An-
other issue is the lack of composition and checking mechanisms for the
imperative bookkeeping. It is not possible to reuse the previously writ-
ten code which results in code that is hard to maintain and hinders soft-
ware evolution. Also the compiler warnings and errors do not indicate
the proper context and relevant information to guide the programmer.

To offer better support for processing objects according to their life-
cycle phases, we propose a new mechanism, called instance pointcuts,
to select sets of objects based on the events in their execution history.
Instance pointcuts are used to declare the beginning and the end of a
life-cycle as events. New instance pointcuts can be defined by reusing
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existing ones in two ways: first, by refining the expressions defining the
relevant events and second, by composing two or more instance pointcuts
using set operators.

An instance pointcut’s concise definition consists of three parts: an
identifier, a type which is the upper bound for all the selected objects
in the phase-specific set, and a specification of relevant objects. For a
basic instance pointcut definition, the specification utilizes pointcut ex-
pressions to select events that define the start and the end of life-cycle
phases and to expose an object. At these events, the object is added to or
removed from the set associated with the instance pointcut. We refer to
this responsibility as maintaining the instance pointcut’s object set. New
instance pointcuts can be derived from existing ones. Firstly, a new in-
stance pointcut can be derived from another one by restricting the type
of selected objects. Secondly, a new instance pointcut can be created by
reusing the object selection expressions of the existing ones. Lastly, in-
stance pointcuts can be composed arbitrarily by means of set operators.

In this chapter we present a prototype of instance pointcuts as an
extension to AspectJ [KHH+

01] and explain its semantics by explaining
our compiler which transforms instance pointcuts to plain AspectJ and
advanced dispatching library calls.

We reuse the term pointcut for our concept, because it provides a
declarative way of specifying crosscuts. Nevertheless, the instance point-
cuts select objects whose usage crosscuts the program execution rather
than points (or regions) in time [MEY06] as traditional pointcuts do. There-
fore, our instance pointcuts cannot immediately be advised by AspectJ
advice, although we offer the possibility to advise the points in time
when the extent of instance pointcuts changes (cf. Section 3.4.5.2).

The declarative nature of instance pointcuts enables several compile-
time checks which are not automatically possible with equivalent im-
perative code. Such checks are important to notify the developer when
the instance pointcut set is guaranteed to be empty, incompatible types
are used in compositions and refinements, etc. These checks help the
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developer implement her concern correctly and achieve consistency in
phase-specific object sets.

The rest of the part is organised as follows, in Section 3.2 we present a
small case study and explain our motivation for the proposed approach,
and we formulate a problem statement and goals for our work in Sec-
tion 3.3. In Section 3.4, a detailed description of instance pointcuts and its
various features are presented. Section 3.5 explains how instance point-
cuts are compiled. We then present a discussion on the evaluation of
our approach in Chapter 4. In the discussion chapter we discuss an ap-
plication of instance pointcuts for program comprehension and present
an evaluation on code quality, performance and check-ability of instance
pointcut. We conclude by discussing related work and giving a summary
of our approach.

3.2 motivation

Supporting unanticipated extensions or improving already existing code
through refactoring may introduce the concern of keeping track of spe-
cific objects. Objects can be grouped according to how they are used
(passed as arguments to method calls, act as receiver or sender for method
calls, etc.) and concerns of an application may be applicable only to ob-
jects used in a specific way. Therefore we must be able to identify and
select such objects. We want to expose sets of objects belonging to the
same life-cycle phase by means of a dedicated language construct such
that the implementation of phase-dependent concerns can be explicit.

In Figure 3.1, we outline a part of the architecture of an online shop
application. We use this scenario to give examples of grouping objects
into sets according to how they are used and how to use these sets in
the implementation of concerns.
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Figure 3.1: Part of an online shop application

3.2.1 Example Architecture

In an online shop application, objects of the same type can exist at differ-
ent phases of their life-cycle. In Figure 3.1 the static structure of a simpli-
fied online shop is shown. This structure shows part of the system from
the Vendor and the OnlineShop’s perspective. Vendors can submit different
kinds of Discounts to the ProductManager for the Products they are sell-
ing. The discounts Vendors submit are applied to the system on the next
day, so there’s no option to dynamically declare discounts on products.
Product is the root of the type hierarchy that represents different kinds
of items that are sold in the online shop; i.e., Product is parent to classes
such as BeautyProduct and SportProduct (not shown in the figure). Each
Product holds a list of Discounts that are applied to it. The OnlineShop has
a user interface represented by the OnlineShopUI class, which is used to
display information to the customers.

3.2.2 Unanticipated Extensions

A new feature is added to the online shop which requires creating an
alert when a product is applied a surprise discount. The list of surprise
discounted products should be available to the user at any time. The
surprise discounts are submitted by Vendors and they can be submit-
ted or withdrawn any time. In order to realize this extension in an OO-
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approach, we need to change several classes. First the class ProductManager
should keep a set of Products to which a surprise discount is applied,
in Listing 3.1 this is shown in line 3. This set is updated when a new
discount of type SurpriseDiscount is submitted or withdrawn (lines 4–
19). There can be other components which are interested in this set
surpriseDiscount being updated. So we need to create a new type of
listener, which listens to the changes in this set and handles the change
event. In order to add a listener of this type we implement a simple add
method addSurpriseDiscountListener.

There should also be some changes in the OnlineShop class. Since
OnlineShop is the main application which updates the UI, the changes
in the ProductManager’s surpriseDiscount list is interesting for this class.
To listen to these changes it should create a SurpriseDiscountListener as
an anonymous class (lines 26– 33) and pass this as an argument after
instantiating the ProductManager in its constructor. It should also include
a method for displaying the new UI component; the discount alert which
is a small notification that pops up in the UI when a surprise discount
is submitted. Once a discount alert is created, an event is fired from the
method updateDiscountAlert wrapping the created discount alert which
is then received by the updateAndDisplayUI method. This method checks
the type of the event and updates the UI accordingly. To distinguish
surprise discount alert events from other events, we should also create a
subtype of the class UIEvent (line 50) to repaint the relevant components.

1 class ProductManager{

2 ...

3 Set<Product> surpriseDiscount = createSet();

4 public void submitDiscount(Product p, Discount d){

5 ...

6 if(d instanceof SurpriseDiscount){

7 surpriseDiscount.add(p);

8 //iteration over sdListenerList

9 listener.handleSurpriseDiscountAdded(p);

10 }

11 }
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12 public boolean withdrawDiscount(Product p, Discount d){

13 ...

14 if(d instanceof SurpriseDiscount){

15 surpriseDiscount.remove(p);

16 //iteration over sdListenerList

17 listener.handleSurpriseDiscountRemoved(p);

18 }

19 }

20 public void addSurpriseDiscountListener(SurpriseDiscountListener

listener){

21 this.sdListenerList.add(listener);

22 }

23 }

24 class OnlineShop{//SINGLETON

25 ...

26 private SurpriseDiscountListener listener = new

SurpriseDiscountListener(){

27 public void handleSurpriseDiscountAdded(Product p){

28 updateDiscountAlert(p, true);

29 }

30 public void handle surpriseDiscountRemoved(Product p){

31 updateDiscountAlert(p, false);

32 }

33 }

34 public void init(){

35 ...

36 ProductManager productManager = createProductManager();

37 productManager.addSurpriseDiscountListener(listener);

38 }

39 public void updateDiscountAlert(Product p, boolean display){

40 DiscountAlert discountAlert = //create surprise discount

alert/remove existing alert for Product p

41 fireListUpdateEvent(new

SurpriseDiscountUpdateEvent(discountAlert));

42 }

43 public void updateAndDisplayUI(UIUpdateEvent e){

44 //update UI
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45 if(e instanceof SurpriseDiscountUpdateEvent)

46 ui.surpriseDiscountUI().update((SurpriseDiscountUpdateEvent)e);

47 }

48 }

50 class SurpriseDiscountUpdateEvent implements UIEvent{...}

Listing 3.1: A Java implementation of discount alert concern

This OO-solution is scattered among the classes ProductManager and
OnlineShop and tangled with multiple methods. It also requires addi-
tional classes to be added to the source.

An aspect-oriented implementation can offer a better solution by en-
capsulating the concern in an aspect. Listing 3.2 shows a possible solu-
tion. The set of products which are applied a surprise discount is kept
in the aspect (line 2). The following two pointcuts submit and withdraw

selects the products to which a SurpriseDiscount is applied (lines 3 – 4).
The corresponding advice declarations for these pointcuts maintain the
surpriseDiscount set. The submit pointcut triggers the surprise discount
alert method (line 8). There is also the display pointcut (line 5), which
intercepts the call to fireListUpdateEvent method and add the condition
for the surprise discount list in an around advice (lines 14 – 19). This as-
pect includes the implementation of updateDiscountAlert, which creates
the discount alert and notifies the OnlineShop’s UI.

1 aspect SDiscount{

2 Set<Item> surpriseDiscount = createSet();

3 pointcut submit(Product p): call(*
ProductManager.submitDiscount(..)) && args(p,

SurpriseDiscount);

4 pointcut withdraw(Product p): call(*
ProductManager.withdrawDiscount(..)) && args(p,

SurpriseDiscount);

5 pointcut display(UIUpdateEvent event): call(*
OnlineShop.fireListUpdateEvent(..)) && args(event);

6 after(Product p): submit(p){

7 surpriseDiscount.add(p);
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8 updateDiscountAlert(p, true);

9 }

10 after(Product p):withdraw(p){

11 supriseDiscount.remove(p);

12 updateDiscountAlert(p, false);

13 }

14 void around(UIUpdateEvent event): display(event){

15 if(e instance of SurpriseDiscountUpdateEvent)

16 OnlineShop.instance().ui.surpriseDiscountUI().

17 update((SurpriseDiscountUpdateEvent)e);

18 proceed(event);

19 }

20 public void updateDiscountAlert(Product p, boolean display)

21 {

22 //create/remove discount alert

23 OnlineShop.instance().fireListUpdateEvent(new

SurpriseDiscountUpdateEvent(discountAlert));

24 }

25 }

Listing 3.2: An AspectJ implementation of discount alert concern

3.2.3 Discussion

AOP already helps localise the concern and to integrate it to the system
with minimal modifications to the existing code. However maintenance
of the surpriseDiscount set requires the same boilerplate code as the
OO solution does. Essentially, the code selects Product objects based on
the discount they are applied to and deselects them once they are rid
of this discount. This marks a phase in the life-cycle of a Product ob-
ject. Traditional AOP solutions also fail to declare the life-cycle concern in
a declarative manner; although AOP localises the concern into a single
compilation unit, the concern is still implemented as separate imperative
statements. Furthermore, reusing such existing reifications of objects in
a specific life-cycle phase by refining or composing them is not conve-
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niently supported at all; For example, if we want to find the subset of
BeautyProducts of the surpriseDiscount set, we have to iterate over it and
check instance types to create a new set. Such imperative definitions are
difficult or impossible to analyse by the compiler. For instance, it may be
desirable to warn developers about pointcuts that probably will never
match any object, e.g., because the selection events will never happen.
With a declarative notation, a compiler would be able to identify such
situations. These observations led us to our problem statement which is
laid out in the next section.

3.3 problem statement

In the previous section we have demonstrated two things: First, the im-
plementation of some concerns requires accessing groups of objects with
similar usage history. Second, making such groups accessible to the pro-
gram in a modular and re-usable way is not supported by current pro-
gramming languages.

Since creating object sets according to execution events is a crosscut-
ting concern, we claim that a new programming technique in the style
of aspect-oriented programming is required for modularising concerns
depending on object groups. Such a programming construct must satisfy
the following needs:

1. A declarative way of selecting/de-selecting objects according to the
events they participate in should be provided.

2. The selected objects should be kept in a data structure that does
not allow duplicates.

3. The set of objects should be accessible and any changes to this set,
i.e., adding/removing objects, should create a notification.

4. For the same kind of objects, the sets should be composable to
obtain new sets and the composition should also satisfy the above
requirements.
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Our first requirement is derived from our main observation about the
need for selecting objects based on their usage history. The second re-
quirement is due to the fact that the same object can participate in the
same event more than once; in this case we do not need to add this ob-
ject to the group over and over again. Counting the number of times
an object participates in an event can be relevant. Therefore a set data
structure where each element has a cardinality, defined as the number of
times it was added to the set, should be used. The third requirement has
to do with a new modularisation mechanism. As we have mentioned in
the motivation, localisation and modularisation are not always the same
thing. A concern can be localised in a single compilation unit meaning
its implementation can be in a single file. However this does not make
sure that the concern is implemented in a modular way. In fact as we
have shown in the AspectJ implementation of our example, the actual
concern of adding and removing surprise discount is implemented in a
fragmented way. This implementation is neither reusable nor extensible.
The fourth requirement is also related to the imperative programming
of collections in programming languages.

3.4 instance pointcuts

To support the requirements outlined in the previous section, we pro-
pose a new kind of pointcut for declaratively selecting objects based on
their life-cycle phases, where the beginning and the end of a phase is
marked by events. An instance pointcut is a declarative language con-
struct that is used to reify and maintain a set of objects of a specified
type. The objects are selected over a period marked by events in their
life-cycle. Instance pointcuts modularise the object selection concern and
make it declarative.

In the remainder of this section, we explain instance pointcuts in de-
tail. The concept of instance pointcuts is language-independent; it can be
implemented as an extension to arbitrary OO-based aspect-oriented lan-
guages. In this work, we have implemented a prototype as an extension
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to AspectJ. Since we inherit AspectJ’s join-point model, our prototype
also shares some of its limitations. Nevertheless the AspectJ extension
provides a good illustration to how instance pointcuts can be used. In
this section we provide many examples in our AspectJ-based instance
pointcuts implementation.

3.4.1 Basic Structure and Properties

A concrete instance pointcut definition consists of a left hand-side and a
right-hand side (Figure 3.2, rule 1). At the left-hand side the pointcut’s
name and a type is declared. Each instance pointcut declaration starts
with a static modifier followed by the keywords instance pointcut. An
instance pointcut does not declare pointcut parameters since it has the
specific purpose of exposing one object from an event; it has a single
implicit parameter called instance of the declared type.

At the right-hand side the instance pointcut expression selects the de-
sired events from join points and then binds the exposed object (repre-
sented by the instance parameter) as a member of the instance pointcut’s
set.

hinstance pointcuti ::= ‘instance pointcut’ hnamei ‘<’ hinstance-typei ‘>’ ‘:’
hip-expri (‘UNTIL’ hip-expri)?

hip-expri ::= hafter-eventi ‘||’ hbefore-eventi
| hbefore-eventi ‘||’ hafter-eventi
| hafter-eventi
| hbefore-eventi

hafter-eventi ::= ‘after’ ‘(’hpointcut-expressioni‘)’

hbefore-eventi ::= ‘before’ ‘(’hpointcut-expressioni‘)’

Figure 3.2: Grammar definition for instance pointcuts
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3.4.2 Add/Remove Expressions

An instance pointcut expression is a composition of two sub-expressions
separated by the UNTIL keyword: 1. The add expression which selects the
events at which objects are added to an instance pointcut’s set, is manda-
tory. 2. The remove expression which selects the events at which objects
are removed from the set, is optional. The ‘add to set’ and ‘remove from
set’ operations are implicitly performed when certain events specified in
the corresponding sub-expression (cf. Figure 3.2, rule 1) occur. In natural
language we can describe the semantics of an instance pointcut as: when
an add event occurs add the instance of the desired type into a set until
a remove event occurs in which the same instance participates in.

In AspectJ, join points mark sites of execution; a join point by itself
does not define an event. Pointcut expressions select join points and
pointcuts are used with advice specifications to select a particular event
in that join point. As discussed by Masuhara et al. [MEY06] such a
region-in-time join-point model hinders re-use of pointcuts.

In our prototype we combine pointcut expressions with advice speci-
fiers and obtain expression elements. Each expression element contains a
pointcut expression, which matches a set of join points. Then, from these
join points, according to the advice specifier the before or after events are
selected. Both add and remove expressions are composed of expression
elements which can be a before element or an after element (Figure 3.2, rule
3-4). A sub-expression (add/remove expression) contains at least one ex-
pression element and at most two. In Figure 3.2 the second grammar rule
depicts this statement.

In Figure 3.2 rules 3 and 4 contain the hpointcut- expressioni rule
which represents an AspectJ pointcut expression. However we have in-
troduced a restriction that in every pointcut expression, there must be
exactly one binding predicate (args, target etc.) that binds the instance

parameter. Furthermore, it is mandatory to bind the instance parameter,
since it represents the object to be added or removed from the set.
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Allowing only the binding of one value at each event is a limitation
of our current language prototype. It would be a straight-forward exten-
sion of the instance pointcut language to allow binding multiple values
to the implicit instance parameter and then add all bound values to
the instance pointcut’s set (e.g the passed parameter with args and the
returned object with returning). However, this would require a more
complex code generation.

The binding predicates are extended to include the returning clause.
The returning clause binds the value returned by a method or a construc-
tor. In AspectJ the syntax is restricted and returning can only be used in
an after advice, since the returned value is only available after a method
finishes execution, this is also true in our case. Although we do not have
this restriction syntactically, we enforce that the returning clause is used
only with the after event selector by means of a semantic check.

In an instance pointcut expression, it is only possible to OR a before
event with an after event. The before clause selects the start of executing
an operation (i.e., the start of a join point in AspectJ terminology) and the
after clause selects the end of such an execution. For two operations that
are executed sequentially, the end of the first and the start of the second
operation are treated as two different events. Thus, the before and after
clauses select from two disjoint groups of events and the conjunction of
a before and an after clause will always be empty.

1 static instance pointcut surpriseDiscount<Product>:

2 after(call(* ProductManager.submitDiscount(..))

3 && args(instance, SurpriseDiscount))

4 UNTIL

5 after(call(* ProductManager.withdrawDiscount(..))

6 && args(instance, SurpriseDiscount));

Listing 3.3: A basic instance pointcut declaration with add and remove
expressions

The instance pointcut in Listing 3.3 shows a basic example of the in-
stance pointcut that defines the same behavior as was discussed in our
motivating example in Section 3.2. The left-hand side of the instance
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pointcut indicates that the pointcut is called surpriseDiscount and it is in-
terested in selecting Product objects. On the right hand side, there are two
expressions separated by the UNTIL keyword. The first one is the add ex-
pression. It selects the join-point marked by the method submitDiscount

and from the context of this event it exposes the Product object with the
args clause and binds it to the instance parameter. The second one is
the remove expression and it selects the after event withdrawDiscount call
and exposes the Product instance in the method arguments and binds it
to the instance.

Note that instance pointcuts do not keep objects alive, as instance pointcuts
are non-invasive constructs, which do not affect the program execution
in any way. So even if the remove expression was not defined for the
surpriseDiscount instance pointcut, when the Product instances are col-
lected by the garbage collector, they are removed from the set.

3.4.3 Multisets

An instance pointcut reifies an object set as a multiset. A multiset, also
referred to as a bag, allows multiple appearances of an object. Every con-
tained object has a corresponding cardinality which indicates its multi-
plicity in the set.

The instance pointcut shown in Listing 3.4 selects Product instances,
which are applied a Discount. The remove expression removes a Product

instance if the Discount is removed from that Product. With this pointcut
we would like to represent the currently discounted products. Multiset
makes sure that Products can be added for each discount submission
operation. When the same product is added with different types of dis-
counts, and if one of the discounts is removed, then still one entry of that
instance is left in the set. If instance pointcuts only supported a set then
as soon as a discount is removed from a product, its only copy would be
removed and it would appear as if there are no more discounts on that
product.

1 static instance pointcut multi_discount<Product>:
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2 after(call(* ProductManager.submitDiscount(..))

3 && args(instance))

4 UNTIL

5 after(call(* ProductManager.withdrawDiscount(..))

6 && args(instance));

Listing 3.4: An instance pointcut utilizing multiset property

3.4.4 Refinement and Composition

Instance pointcuts can be referenced by other instance pointcuts. They
can be refined in two ways and they can be composed together to create
new instance pointcuts.

3.4.4.1 Referencing and Type Refinement

Instance pointcuts are referenced by their names. Optionally the refer-
ence can also take an additional statement for type refinement, which se-
lects a subset of the instance pointcut that is of the specified type. Type
refinements require that the refinement type is a subtype of the origi-
nal instance type. For example, the instance pointcut surpriseDiscount

(Listing 3.3) can be refined as shown in Listing 3.5. The refinement ex-
pression selects the subset of BeautyProduct instances from the set of
Product instances selected by the surpriseDiscount instance pointcut. The
surpriseDiscountBeauty instance pointcut is defined using the result of
this expression. Note that with this notation objects that are of a sub-
type of BeautyProduct will also be selected (equivalent to an instanceof

check).

1 static instance pointcut surpriseDiscountBeauty<BeautyProduct>:

2 surpriseDiscount<BeautyProduct>;

Listing 3.5: A type refined pointcut
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3.4.4.2 Instance Pointcut Expression Refinement

In Section 3.4.2 we have introduced the instance pointcut expression,
which consists of two sub-expressions (add and remove expressions).
We provide an expression refinement mechanism which makes it possi-
ble to reuse parts of the existing instance pointcut expressions to create
new ones. The expression elements forming the sub-expressions can be
accessed individually to be extended by concatenating other primitive
pointcuts, so-called refinement expressions, with boolean operators. We of-
fer a naming convention to access parts of the instance pointcut expres-
sion with different granularity. Note that this syntax is only valid when
used in the context of an expression refinement.

<ip-ref> When an instance pointcut is referenced directly then the re-
finement expression is composed with the pointcut expression in
all of the before and after event selectors, in the add and remove
expressions.

<ip-ref>.{add, remove} This expression provides access at the sub-
expression level. The refinement expression is composed with the
pointcut expressions in referenced sub-expression’s before and af-
ter event selectors.

<ip-ref>.{add, remove}_{after , before} This naming convention
is used to access the pointcut expressions of the individual before
and after event selectors and provides the finest granularity. In fact,
the other two access statements can be written in terms of this one,
since they just provide a short hand for the collective expression
refinements.

It is possible to compose any primitive pointcut, except the binding
predicates, with a sub-expression. Although we chose not to restrict this
aspect, some compositions will not be meaningful for selecting objects.
For example, composing an execution pointcut with an expression that
already includes a call pointcut will result in a non-matching pointcut
expression. This is further discussed in Section 4.2.
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Let us explain the usage of the expression access by examples. The
example shown in Listing 3.6 shows a reuse of the surpriseDiscount’s
sub-expressions to create a new instance pointcut. The newly created
pointcut’s sub-expression can be accessed through the aforementioned
naming conventions.

1 static instance pointcut surpriseDiscountOver50<Product>:

2 surpriseDiscount.add && if(instance.getPrice() > 50) UNTIL

3 surpriseDiscount.remove;

Listing 3.6: Expression refinement of surpriseDiscount (Listing 3.3) instance
pointcut

The if pointcut in Listing 3.6 is appended to the add expression of
the instance pointcut surpriseDiscount (Listing 3.3). The effect of this
composition is as follows; the if pointcut will be appended to all of the
pointcut expressions contained in the after and before event selectors.
Since the surpriseDiscount pointcut only has one after event in its add
expression, the resulting add expression is equivalent to the expression
shown in Listing 3.7.

after(call(* ProductManager.submitDiscount(..)) &&

args(instance, SurpriseDiscount) && if(instance.getPrice() > 50))

Listing 3.7: Equivalent add expression of the expression refinement shown in
Listing 3.6

Expression refinements can also be used for more precise type refine-
ments. Revisiting the example given in Section 3.4.4.1, the
surpriseDiscountBeauty instance pointcut (Listing 3.5) can be constructed
to include instances with the exact type BeautyProduct (Listing 3.8). The
effect is different from type refinement since surpriseDiscountOnlyBeauty

does not include subtypes of BeautyProduct.

1 static instance pointcut surpriseDiscountOnlyBeauty<BeautyProduct>:

2 surpriseDiscount &&

if(instance.getClass().equals(BeautyProduct.class));

Listing 3.8: Type refinement by expression refinement
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3.4.4.3 Instance Pointcut Composition

Instance pointcuts reify sets, for this reason we facilitate the composition
in terms of the set operations intersection and union. In Figure 3.3, an ex-
tended version of the grammar definition is shown. The composition
of two instance pointcuts creates a composite instance pointcut. Different
from regular instance pointcuts, composite ones are declared with the
keyword composite and they do not have instance pointcut expressions.
Instead they monitor the component instance pointcuts’ set change op-
erations and update their own set accordingly. In order to declare a set
intersection the keyword inter and to declare a set union the keyword
union is used. Throughout the text we use the mathematical symbols for
these operations, \ as intersection and [ as union. Since composite in-
stance pointcuts do not have an instance pointcut expression they cannot
be used in expression refinement. However, they can be type-refined; the
result of the type refinement of a composite instance pointcut is also a
composite instance pointcut and must be declared as such.

The type of a composite instance pointcut must be assignment compat-
ible to the types of the component instance pointcuts. It is also possible
to leave out the type declaration and let the compiler infer the type. For
a composition of two instance pointcuts, the type of the composite one
can be determined depending on the relation of the types of the compo-
nent instance pointcuts. For illustration of this type inference, consider
the type hierarchy in Figure 3.4a: R is the root of the hierarchy with the
direct children A and B (i.e., these types are siblings); C is a child of B.
Figure 3.4b shows four distinct cases: Either the type of one of the in-
stance pointcuts is a super type of the other one’s type (second row), or
both types are unrelated (third row); and the composition can either be
\ (third column) or [ (fourth column).

When composing two instance pointcuts with types from the same
hierarchy, the type of the composition is the more specific type (C in the
example) for an \ composition and the more general type (B) for an [
composition. When composing two instance pointcuts with sibling types,
for the \ operation the resulting composition cannot select any types
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hinstance-pointcuti ::= ‘composite instance pointcut’ hnamei (‘<’
hinstance-typei ‘>’)? ‘:’ ...

| hcomp-expri

hcomp-expri ::= hcomp-expri ‘inter’ hcomp-expr-ti
| hcomp-expr-ti

hcomp-expr-ti ::= hcomp-expr-ti ‘union’ hcomp-expr-f i
| hcomp-expr-f i

hcomp-expr-f i ::= hip-ref i
| ‘(’ hcomp-expri ‘)’

hip-ref i ::= hnamei
| hnamei(‘<’ hrefined-instance-typei ‘>’)?

Figure 3.3: Syntax for instance pointcut composition

since the types A and B cannot have a common instance. The [ operation
again selects a mix of instances of type A and B, thus the composed
instance pointcut must have the common super type, R in the example.

Because instance pointcuts are reified as multisets, these operations
are different from the regular set operations. The definition of the inter-
section and union operations for multisets is given in the next definition.

Definition 1 Assume (X, f) and (Y,g) are multisets, where X, Y represents the
elements and f,g represents a function which maps each element to a cardinal
number.

The intersection of these sets is defined as (V ,h) where,

V = X\ Y

and 8v 2 V the multiplicity of v is defined as

h(v) = min(f(v),g(v))
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(a) A
simple
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hierar-
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(b) Instance pointcut compositions and ef-
fect on the captured instance type

Figure 3.4: An example to illustrate composition’s effect on types

The union of these sets is defined as (Z, i) where,

Z = X[ Y

and 8z 2 Z the multiplicity of z is defined as

i(z) = max(f(z),g(z))

3.4.5 Using Instance Pointcuts

Up to now we have explained the syntax and semantics for definitions
of instance pointcuts. In this section we explain how to use instance
pointcut in the context of an AO language, namely, AspectJ. As example,
throughout this section, we use the instance pointcut defined in List-
ing 3.9, which maintains a set of Products that are currently out of stock.
Instance pointcuts are static members of classes and can have any visi-
bility modifier. Thus, all modules, aspects as well as classes, that can see
an instance pointcut can use it in the ways described below.

1 static instance pointcut outOfStock<Product>:

2 after(call(* Product.outOfStock(..)) &&
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3 target(instance))

4 UNTIL

5 after(call(* Vendor.stock(..))

6 && args(instance));

Listing 3.9: An instance pointcut for out of stock products

3.4.5.1 Set Access

Instance pointcuts reify a phase-specific object set and this set can be ac-
cessed through a static method, which has the same name as the instance
pointcut identifier. Only the get methods of the collection interface can
be used to retrieve objects from the set. Write methods, which modify
the contents of the set, are not allowed since they create data inconsis-
tencies like adding an object which is not in the same life-cycle phase
as the ones selected by the instance pointcut. We ensure this by return-
ing an UnmodifiableSet from the set access methods. In Listing 3.10 the
outOfStock() method (line 4) returns the set of Products that are currently
out of stock.

1 public static double calculateDamages()

2 {

3 double damage = 0;

4 for(Product p: MyAspect.outOfStock())

5 damage = damage + p.getPrice();

6 return damage;

7 }

Listing 3.10: Calculate a damage estimate for out of stock products

3.4.5.2 Set Monitoring

An instance pointcut definition provides two set change events, an add
event and a remove event. In order to select the join points of these
events, every instance pointcut definition automatically has two implicit
regular pointcuts. These implicit pointcuts have the following naming
conventions, hnamei_instanceAdded, hnamei_instanceRemoved, where
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hnamei is the name of the instance pointcut. In Listing 3.11, a before
advice using the outOfStock_instanceAdded pointcut is shown. When a
product is marked out of stock and it is added to the set, a notification
is sent to the related Vendor indicating that the product is out of stock.

1 before(Product p): outOfStock_instanceAdded(p)

2 {

3 OnlineShop.notifyVendor(p.getVendor, STOCK_MSG);

4 }

Listing 3.11: Set monitoring pointcut used to notify vendors

3.5 compilation of instance pointcuts

A goal for our compiler implementation is to support modular compila-
tion. This means to compile an aspect with instance pointcuts that refer
to instance pointcuts defined in other aspects, it must be sufficient to
know their declaration (i.e., the name and type); it should not be nec-
essary for the compiler to know the actual expression of the referenced
instance pointcuts.

We have implemented the instance pointcut language using code trans-
formation employing two tools. First, the parser of our language and
the code generation templates are implemented with the EMFText1 lan-
guage workbench. For this purpose, we have defined the AspectJ gram-
mar by using JaMoPP2 [HJSW10] as the foundation and extended it with
the grammar for instance pointcuts which was presented interspersed
with the previous section.

Second, the generated code uses the ALIA4J3 [BSY+
12] framework

for so-called advanced dispatching language implementations. The term
advanced dispatching refers to late-binding mechanisms including, e.g.,
predicate dispatching and pointcut-advice mechanisms. At its core, ALIA4J

1 EMFText, see http://www.emftext.org/
2 JaMoPP: Java Model Parser and Printer, see http://jamopp.inf.tu-dresden.de
3 The Advanced-dispatching Language Implementation Architecture for Java. See http:

//www.alia4j.org/alia4j/.
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contains a meta-model of advanced dispatching declarations in which
AspectJ pointcut and advice, as well as instance pointcuts can be ex-
pressed.

We use ALIA4J to realise the crosscutting behaviour of our language
instead of AspectJ because the way AspectJ handles binding of values
and restricting their types in pointcuts would prohibit a modular com-
pilation of instance pointcuts. While in instance pointcuts value binding
is uniformly expressed in a pointcut expression, in AspectJ binding the
result value must be specified in the advice definition (via the after

returning keyword) and all other values are bound in pointcut expres-
sions. Therefore, AspectJ code generated for an instance pointcut expres-
sion would have to depend on which value is bound; this means that
the code generation for a derived instance pointcut would also depend
on the binding predicate (an implementation detail) of the referenced
one. It is not possible to work around this using AspectJ’s reflective
thisJoinPoint keyword, as it does not expose the result value at all. An-
other, similar limitation is that AspectJ does not allow to narrow down
the type restriction for the bound value of a referred pointcut. Thus, in
order to be able to transform an instance pointcut with type refinement
to AspectJ, it is necessary to know the definitions of the referenced in-
stance pointcuts and inline them.

Our compiler generates different code depending on whether the in-
stance pointcut is a composite one or not and whether it is a refine-
ment of an instance pointcut or not. Common to all cases is the code
for managing the data of the instance pointcut. Listing 3.12 exemplary
shows that code; the variables ${Type} and ${ipc} stand for the instance
pointcut’s type and name, respectively. The natural text written in the
comments provides a description of the code for which it stands.

First, to store the instances currently selected by an instance pointcut
as a multiset, a WeakHashMap is defined (cf. line 1); the keys of the map
are the selected objects and the mapped value is the cardinality. We use
weak references to avoid keeping objects alive which are not reachable

48



3.5 compilation of instance pointcuts

from the base application anymore. The generated method ${ipc} returns
all objects which are currently mapped (cf. lines 2–4).

Methods are also generated to access, increase or decrease the counter
of selected objects; if an object does not have an associated counter yet,
or the counter reached zero, the object is added to or removed from the
map, respectively (cf. lines 5–15). After having performed their opera-
tions, ${ipc}_addInstance and ${ipc}_removeInstance methods invoke an
empty method, passing the added or removed object. We generate a pub-
lic, named pointcut selecting these calls, exposing the respective events
(cf. lines 18 and 19).

1 private static WeakHashMap<${Type}, Integer> ${ipc}_data = new

WeakHashMap<${Type}, Integer>();

2 public static Set<${Type}> ${ipc}() {

3 return Collections.unmodifiableSet(${ipc}_data.keySet());

4 }

5 public static void ${ipc}_addInstance(${Type} instance) {

6 //increase counter associated with instance by the ${ipc}_data map

7 ${ipc}_instanceAdded(instance);

8 }

9 public static void ${ipc}_removeInstance(${Type} instance) {

10 //decrease counter associated with instance by the ${ipc}_data map

11 //if the counter reaches 0, remove instance from the map

12 ${ipc}_instanceRemoved(instance);

13 }

14 public static int ${ipc}_cardinality(${Type} o) {..}

15 private static void ${ipc}_setCardinality(${Type} o, int c){..}

16 private static void ${ipc}_instanceAdded(${Type} instance) {}

17 private static void ${ipc}_instanceRemoved(${Type} instance) {}

18 public pointcut ${ipc}_instanceAdded(${Type} instance) :

call(private static void Aspect.${ipc}_instanceAdded(${Type}))

&& args(instance);

19 public pointcut ${ipc}_instanceRemoved(${Type} instance) :

call(private static void

Aspect.${ipc}_instanceRemoved(${Type})) && args(instance);

Listing 3.12: Template of generated code for instance set management.
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Next, these bookkeeping methods have to be executed at events corre-
sponding to the instance pointcut definitions. Below, we elaborate on the
code generation for instance pointcuts defined in the different possible
ways.

3.5.1 Non-Composite Instance Pointcuts

A non-composite instance pointcut, generally consists of four underlying
pointcut definitions: specifying join points (1) before or (2) after which
an instance is to be added to the selected instances; and specifying join
points (3) before or (4) after which an instance is to be removed. For each
pointcut definition, we generate a method that creates a corresponding
advanced dispatching model; the methods are called ${ipc}_add_before,
${ipc}_add_after, ${ipc}_remove_before, and ${ipc}_remove_after.

In the meta-model, a Specialization can represent a partial AspectJ
pointcut and a full pointcut expression can be represented as the dis-
junction of a set of Specializations (discussed in detail elsewhere [BM07]).
Figure 3.5 shows the meta-model for a Specialization in ALIA4J consist-
ing of three parts. A Pattern specifies syntactic and lexical properties
of matched join point shadows. The Predicate and Atomic Predicate enti-
ties model conditions on the dynamic state pointcut designators depend
on. The Context entities model access to values like the called object or
argument values. Contexts which are directly referred to by the Spe-
cialization are exposed to associated advice (i.e., they represent binding
predicates).

Depending on the definition of the instance pointcut, advanced dis-
patching models of the underlying pointcuts have to be created in differ-
ent ways. All four underlying pointcuts are optional; a missing pointcut
can be represented as an empty set of Specializations in the meta-model.

plain instance pointcuts For pointcut expressions that are di-
rectly provided, we use a library function provided by ALIA4J which
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Specialization

Context Predicate Pattern

AtomicPredicate

* 0..1

*
* 0..1

0..2

Figure 3.5: Meta-model of a Specialization in ALIA4J.

takes a String containing an AspectJ pointcut as input. We have extended
this library to also accept the returning pointcut designator.

1 static instance pointcut ${ipc}<${Type}>:

2 before(${pc_add_before}) after(${pc_add_after}) UNTIL

3 before(${pc_remove_before}) after(${pc_remove_after};

Listing 3.13: Example of a plain instance pointcut

For the example instance pointcut presented in Listing 3.13, we show
the code generated for the method creating the advanced dispatching
model for the add_before pointcut in Listing 3.14; the other methods are
generated analogously. Line 4 shows the transformation of an AspectJ
pointcut into a set of Specializations in the meta-model by passing the
pointcut as a String—represented by ${pc_add_before} in Listings 3.13

and 3.14—to the above mentioned library function.

1 private static Set<Specialization> ${ipc}_add_before;

2 public static Set<Specialization> ${ipc}_add_before() {

3 if (${ipc}_add_before == null) {

4 ${ipc}_add_before = Util.toSpecializations("${pc_add_before}",

${Type});

5 }

6 return ${ipc}_add_before;

7 }

Listing 3.14: Template for creating the advanced dispatching model for the
add_before expression
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type refinement An instance pointcut can also be defined by re-
ferring to another instance pointcut whereby a type restriction for the
selected instances can be defined. A template for an instance pointcut
defined in such a way is as follows:

static instance pointcut ${ipc}<${Type}>: ${ipc1}<${Type}>;

For such an instance pointcut methods are also created to produce
advanced dispatching models for the four underlying pointcuts (see the
template in Listing 3.15). These methods first invoke the corresponding
methods of the referenced instance pointcut (cf. line 3). Second, the type
restriction is added to the Predicates of the retrieved Specializations (cf.
line 4) with the method addTypeConstraint.

1 public static Set<Specialization> ${ipc}_add_before() {

2 ...

3 Set<Specialization> ipRef = ${ipc1}_add_before();

4 ${ipc}_add_before = Util.addTypeConstraint(ipRef, ${Type});

5 ...

6 }

Listing 3.15: Template for creating the advanced dispatching model for the type-
refined instance pointcut

expression refinement When defining a new instance pointcut
through expression refinement, for each of the four underlying point-
cut expressions, a plain pointcut expression can be anded or ored with
the underlying pointcut expression of the referenced instance pointcut.
As explained in Section 3.4, refinement pointcut expressions must not
include a binding predicate. The referred instance pointcut expression
already has a binding predicate which is carried over to be used as the
binding predicate for the newly composed pointcut expression. The tem-
plate for the generated method for creating the add_before advanced
dispatching model is shown in Listing 3.16. It assumes that the instance
pointcut is named ${ipc} and it refines another instance pointcut ${ipc1}
by anding the pointcut expression ${ipc1_add_before} to the add/be-
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fore underlying pointcut. If the pointcuts are ored, correspondingly the
method orSpecializations is used in line 5.

These utility methods are provided as runtime library for the instance
pointcuts. The method andSpecializations forms the conjunction of the
Predicates and Patterns of the passed Specialization sets. If ipRef is
empty, the conjunction is also empty and an empty set is returned. Oth-
erwise, the Context declared by the Specializations ipRef is copied to
the ones newly created by the andSpecializations method. The method
orSpecializations is implemented similarly; but it forms the disjunction
of Predicates and Patterns and if ipRef is empty, an exception is raised.

1 public static Set<Specialization> ${ipc}_add_before() {

2 ...

3 Set<Specialization> plainIPExpr =

Util.toSpecializatons("${pc_add_before}", ${Type});

4 Set<Specialization> ipRef = ${ipc1}_add_before();

5 ${ipc}_add_before = Util.andSpecializations(ipRef, plainIPExpr);

6 ...

7 }

Listing 3.16: Generated code for creating the advanced dispatching model for
the add/before pointcut of the instance pointcut created with
expression refinement

deployment In each of the above cases, the created advanced dis-
patching models of the pointcuts must be associated with advice invok-
ing the add or remove method for the instance pointcut. In a advanced
dispatching model this is achieved by defining an Attachment, which
roughly corresponds to a pointcut-advice pair. An Attachment refers to
a set of Specializations, to an Action, which specifies the advice function-
ality, and to a Schedule Information, which models the time relative to a
join point when the action should be executed, e.g., “before” the join
point (cf. line 6).

Listing 3.17 shows the generated code for creating and deploying the
bookkeeping Attachments. The first Attachment uses the set of Special-
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izations returned by the ${ipc}add_before method (cf. line 4) and spec-
ifies the ${ipc}_addInstance method as action to execute at the selected
join points (cf. line 5). As relative execution time, the Attachment uses
a “SystemScheduleInfo”; this is provided by ALIA4J for Attachments
performing maintenance whose action should be performed before or
after all user actions at a join point, such that all user actions observe the
same state of the maintained data. Thus, when reaching a selected join
point the instance is added to the instance pointcut’s multiset before any
other action can access its current content. The other Attachments are
created analogously. In the end, all Attachments are deployed through
the ALIA4J System (cf. line 2).

1 public static void ${ipc}_deploy() {

2 org.alia4j.fial.System.deploy(

3 new Attachment(

4 ${ipc}_add_before(),

5 createStaticAction(void.class, ${Aspect}.class,

"${ipc}_addInstance", new Class[]{${Type}.class})

6 SystemScheduleInfo.BEFORE_FARTHEST),

7 //Create Attachments for the other three parts analogously.

8 //For the ‘‘after’’ parts, use SystemScheduleInfo.AFTER_FARTHEST.

9 //For the ‘‘remove’’ parts, specify method ${ipc}_removeInstance.

10 );

11 }

Listing 3.17: Deployment of the bookkeeping for an instance pointcut.

3.5.2 Composite Instance Pointcuts

Composite instance pointcuts require a different compilation strategy
because they do not have the four underlying pointcut expressions. The
data of a composite instance pointcut changes when the data of one of its
referenced instance pointcuts is updated. The corresponding events hap-
pen during the execution of the generated methods ${ipc}_addInstance

and ${ipc}_removeInstance. Therefore, a different mechanism is needed
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than for the non-composite instance pointcuts which depend on user
events.

intersection and union When an instance pointcut ${ipc} is
composed by forming the union or intersection of other instance point-
cuts (${ipcX}), the content of the maintained multiset potentially changes
whenever an instance is added to or removed from one of the referenced
instance pointcuts, events already exposed through ${ipcX}_instanceAdded

or ${ipcX}_instanceRemoved pointcuts. For the maintenance of a compos-
ite instance pointcut a method is generated which reacts to the join
points matching the disjunction of all these pointcuts. The argument of
this method is the instance exposed by these pointcuts, i.e., the instance
that has either been added to or removed from a reference instance point-
cut. When the maintenance method is invoked, we know the cardinal-
ity of this instance potentially changes in the multiset of the instance
pointcut ${ipc}. The cardinality of other instances cannot change. The
generated method, therefore, re-calculates the cardinality of the affected
instance and changes its value in ${ipc}_data.

To generate appropriate code, the compiler first builds a binary ex-
pression tree for the composition expression. Next, it traverses this tree
and generates different code for the cases that the visited node is an in-
stance pointcut reference, or an inter or union operator. For an instance
pointcut reference, code is generated that retrieves the cardinality of the
instance in the multiset of the referenced instance pointcut. For an inter

and union operator, code is generated that calculates the minimum and
maximum, respectively, of both sub-expressions. Finally, the cardinality
in ${ipc}_data is updated.

As example, Listing 3.18 shows the generated code for a composite
instance pointcut with the set expression (${ipc1}union ${ipc2})inter

${ipc3}. Besides, the generated code remembers the old cardinality; when
the cardinality changes from 0 to > 0 or vice versa, the generated method
invokes the method ${ipc}_instanceAdded ${ipc}_instanceRemoved, respec-
tively.
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1 public static void ${ipc}_update(Object o) {

2 int oldCardinality = ${ipc}_cardinality(o);

3 int newCardinality =

4 Math.min(

5 Math.max(

6 ${ipc1}_cardinality(o),

7 ${ipc2}_cardinality(o)),

8 ${ipc3}_cardinality(o));

9 ${ipc}setCardinality(o, newCardinality);

10 if (oldCardinality == 0 and newCardinality > 0)

11 ${ipc}_instanceAdded(o);

12 else if (oldCardinality > 0 and newCardinality == 0)

13 ${ipc}_instanceRemoved(o);

14 }

Listing 3.18: The update method generated from a composition expression

As in the case of non-composite instance pointcuts, an advanced dis-
patching meta-model Attachment is generated and deployed which as-
sociates the Specializations corresponding to the pointcuts with the gen-
erated method.

type refinement of composite instance pointcuts Instance
pointcuts which are defined by means of type refined composite instance
pointcuts, are treated similar to the case above. A method is generated
which is executed when the referenced instance pointcut changes. The
method checks whether the type of the added or removed object is as-
signment compatible with the type restriction. If this is the case, the
same operation (adding or removing the instance) is performed on the
multiset of the refining instance pointcut.

3.5.3 Compiling Plain AspectJ constructs

To ensure consistent ordering between AspectJ advice and our imple-
mentation of instance pointcuts (i.e., that our bookkeeping advice are
executed before user advice), the AspectJ pointcut-advice definitions
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must be processed by ALIA4J. This is possible because ALIA4J can inte-
grate with the standard AspectJ tooling. Using command line arguments
the AspectJ compiler can be instructed to omit the weaving phase. The
advice bodies are converted to methods and pointcut expressions are
attached to them using Java annotations which are read by the ALIA4J-
AspectJ integration and transformed into Attachments at program start-
up. The code generated by our compiler consists of the above explained
methods, as well as plain AspectJ definitions. When compiling this code
with the mentioned command line options, the regular AspectJ pointcut-
advice and the behaviour of the instance pointcuts are both executed by
ALIA4J, thus ensuring a consistent execution order.
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4
I N S TA N C E P O I N T C U T S : D I S C U S S I O N

The instance pointcuts approach satisfies the goals we have stated at the
beginning of Section 3.4 and in Section 3.5 we have shown that instance
pointcuts can be compiled modularly. Our approach provides:

• A concise syntax, which is used to generate the necessary book-
keeping code,

• additional features to declaratively create refined sets, reusing al-
ready created instance pointcuts and,

• a composition mechanism, which uses set operations and allows
modular definition of instance pointcuts.

In this chapter we discuss an application of instance pointcuts in the
program comprehension domain (Section 4.1). This is followed by an
evaluation which includes discussions about code quality improvements,
performance characteristics and enabled analyses (Section 4.2). We con-
clude this chapter by presenting related work (Section 4.3) and final re-
marks.

4.1 applying instance pointcuts for program comprehen-
sion

Complex software systems are difficult to understand because they con-
sist of many elements with complicated dependencies [BH13]. A fac-
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tor further complicating the comprehensibility is the dynamicity of ex-
ecution semantics: In object-oriented programming languages, the dy-
namic type of the receiver object determines which implementation of
the called method will be executed. It is generally not possible to deter-
mine the dynamic type of an expression just by looking at the source
code. For this reason, often dynamic tools are used to observe the pro-
gram execution for comprehending a program. As such tools are mainly
used during debugging, they are often called debuggers; we will also use
this term throughout this section to refer to tools which in general allow
observing and possibly interacting with program executions at runtime.

In object-oriented programming, on the source code level the main
abstractions are classes (object-oriented languages which are not class-
based provide an equivalent like prototypes in delegation-based lan-
guages). At runtime, however, the main building blocks are objects which
are instances of classes. Comprehending the behaviour of a program
means to comprehend the interplay of objects. In general, there can be
arbitrarily many instances of each class, which makes the comprehen-
sion difficult as their connections and dependencies can be manifold.

A natural technique to increase comprehensibility is introducing lim-
ited number of categories, grouping all objects into categories and con-
sidering only the categories during the comprehension task. This is even
well supported by object-oriented languages, since classes already form
such categories and there is an easily observable relation between an
object and its class, and vice versa. However, the categorisation offered
by the class structure of the program is not always the best fit for the
comprehension task at hand. On one hand, instances of the same class
may be used in different ways throughout the program execution; on the
other hand, instances of different classes may be used in the same or a
similar way.

For these reasons, we claim that another, more powerful and flexible
way for dynamically categorising objects is needed to guide the task of
program comprehension. We have found that the abstraction provided

60



4.1 applying instance pointcuts for program comprehension

by instance pointcuts can be useful to support comprehension of highly
dynamic object-oriented programs.

Using pointcut-based techniques for specifying breakpoints in a de-
bugger has been proposed before. For example, Chern and De Volder
[CDV07] have proposed to define breakpoints based on the current con-
trol flow, similar to AspectJ’s cflow pointcut designator. Bodden has pro-
posed stateful breakpoint [Bod11], which allows programmers to specify
the order in which different events must occur to lead to suspension of
the program execution. Yin et al. have presented a language for specify-
ing breakpoints [YBA13] which is also based on a pointcut language and
already allows specifying breakpoints based on object relations. Never-
theless, the instance pointcuts approach is the first to actually maintain a
set of objects, which relate by how they have been used in the past, and
to expose these sets to different debugging facilities.

In the following, we present a walkthrough of a few particular com-
prehension tasks (Section 4.1.1), we illustrate the applicability of instance
pointcuts. Throughout the following section we sketch a user interface
that visualises instance pointcuts. In section 4.1.2 we discuss challenges
in realising the outlined concepts.

4.1.1 Example Walkthrough

In this section, we describe an existing system and in the following sec-
tions we discuss several comprehension scenarios where instance point-
cuts can be useful. Intertwined with these scenarios, we discuss a hypo-
thetical extension to the Eclipse debugger for using instance pointcuts.

We made the observation that instance pointcuts can support program
comprehension while working on an extension to the Jikes Research Vir-
tual Machine [AAB+

05]. In particular, the optimising just-in-time (JIT)
compiler of this virtual machine was being extended. The optimising
compiler works in multiple phases, whereby the first one creates an
object-based intermediate representation (IR) from the Java byte-code of
the method which is currently compiled. This IR, basically a linked list
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Figure 4.1: The Instance Pointcuts
View

Figure 4.2: A highlighted instance
pointcut.

Figure 4.3: Another example of an
instance pointcut defini-
tion.

of Instruction objects, is iteratively analysed and rewritten until eventu-
ally machine code is emitted. In that extension we manipulated this IR
by inserting instructions and adding rewrites. When we made a mistake
runtime failures occurred and we had to understand the impact of this
extension on the further processing of the JIT compiler, i.e. to identify
the fault we had to comprehend a very complex system.

All elements in the IR are instances of the same class (Instruction)
which are configured with an Operator object determining the behavior
of the instruction. Thus, at first sight it is not clear which instruction
is represented by an Instruction object. Besides the referenced Operator
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object, also the creation site of the Instruction object allows to draw con-
clusions about the purpose of an Instruction: There is a factory class
for each kind of instruction. For instance, if we are only interested in in-
structions representing a function invocation, we can focus our compre-
hension task on those Instruction objects that are returned by a create

method in the class Call.

4.1.1.1 Scenario 1

a view for instance pointcuts An instance pointcut, let’s call it
callInstructions, selecting the objects described above can be defined as
seen in Figure 4.11. The figure depicts a view for defining instance point-
cuts. The new view allows to add instance pointcuts which are main-
tained during the execution of the program, and to inspect the content
of the defined instance pointcuts while the program execution is sus-
pended at a breakpoint. The left column shows the names of the defined
instance pointcuts. A row with an instance pointcut can be expanded,
for example in the figure the instance pointcut callInstructions is ex-
panded and its elements are listed. When a row containing the name of
an instance pointcut is selected, the detail pane (at the bottom) shows
its definition. When a row is selected which represents an element of an
instance pointcut, the toString() of the value is shown.

linking the instance pointcut view The left-most icon of the
toolbar in Figure 4.2 allows linking the Instance Pointcut View with other
debugging-related views. When linking is turned on and an object is
selected on another view, e.g. in the Variables view, all instance pointcuts
are highlighted which contain the selected object. Figure 4.2 shows the
instance pointcut callInstructions in green, which means that the user
has currently selected an object contained in callInstructions. In the
outlined comprehension task, this feature makes it simple to identify for

1 For brevity we only show simple class names.
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each Instruction object, if it represents an instruction relevant for the
task, i.e., for which an instance pointcut was defined.

4.1.1.2 Scenario 2

Besides representing different (virtual) machine instructions,
Instructions also need to be distinguished by the purpose for which they
have been created. The majority of the instructions are directly compiled
from the Java byte-code instructions. But some instructions have to be
inserted into the generated machine code to inject the runtime services
offered by the virtual machine, e.g., thread switching, memory manage-
ment, and profiling for facilitating optimisations.

A simple example is insertion of the runtime service for managed
memory allocation. This is done in a compiler phase after the initial
creation of the Instruction-based intermediate representation. When an
instruction representing the allocation of an object is encountered in this
phase, the Instruction is mutated by turning it into a Call instruction in-
voking the virtual machine’s function realising this service. Figure 4.3
shows the instance pointcut selecting all Instructions that inject a run-
time service.

using instance pointcuts in conditions and expressions

Besides using instance pointcuts during inspection when the execution
is suspended at a breakpoint, defined instance pointcuts can also be used
for defining conditional breakpoints. As an example, consider the task of
comprehending a late compiler phase. At this time, many Instructions
have been mutated for optimization purposes or for injecting runtime
services. But many Instructions still simply reflect the functionality di-
rectly specified by the Java byte-code instructions. Assume we want to
comprehend the impact of injected runtime services on the liveness anal-
ysis, a phase necessary for generating meta-data needed by the garbage
collector. Figure 4.4 shows a screenshot of the breakpoint properties
dialog where the condition refers to the instance pointcut defined in
Figure 4.3. The execution is only suspended at this breakpoint when

64



4.1 applying instance pointcuts for program comprehension

Figure 4.4: Breakpoint properties using an instance pointcut.

the local variable inst is selected by the instance pointcut describing
the Instructions that realize runtime services. In the same way, watch
expressions entered in Eclipse’s Expression View can refer to instance
pointcuts, simply treating them as java.util.Sets.

4.1.1.3 Scenario 3

instance pointcut watchpoints To demonstrate the applicabil-
ity of remove expression feature of instance pointcuts, consider the two
scenarios above. Since mutation changes the operation represented by
an Instruction object, mutated Instructions must be removed from the
instance pointcut representing a specific operation as mentioned in the
first scenario. Figure 4.5 shows the extended instance pointcut definition.

Furthermore, the language concept of instance pointcuts allows to ad-
vise the joint points when a new instance is added to an instance point-
cut and also when an instance is removed. Instance pointcuts internally
maintain multisets; we specify that only the initial addition and the final
removal of an object are join points, i.e. when the cardinality of an object
in the multiset changes from 0 to 1 and from 1 to 0, respectively. These
join points can also be used to define watchpoints. The two right-most
columns in Figure 4.5 represent this feature. In the example, the watch-
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Figure 4.5: Setting watchpoints for instance breakpoint changes.

point for adding an object to the instance pointcut callInstructions is
enabled; the watchpoint for removing an object is disabled.

4.1.2 Challenges

Obviously, the expressiveness of the pointcut language determines how
precisely sets of objects can be selected. Since in our prototype we use
the AspectJ pointcut language as a base, we are limited to selecting the
supported events and specifying supported restrictions. In the example
of the optimising compiler of the Jikes virtual machine, this can be a
significant limitation: long switch statements identify different ways of
processing instructions and it is often relevant in the context of which
case an object was used. However, since AspectJ pointcuts cannot refer
to switch cases, they cannot be used in the add or remove expressions of
instance pointcuts.

We are used to adding breakpoints or watch expressions dynamically,
during the runtime of the debugged program. With instance pointcuts,
this is not possible or at least risky. As is always the case with dynamic
deployment of aspects, it may be that some relevant join points have
already passed at the time of deployment. Thus, it may be that objects,
which should have been selected by an instance pointcut, are not se-
lected; or not all of the recursive additions have been tracked and an ob-
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ject is removed from the multiset too early. For these reasons, we do not
suggest to support dynamic addition of instance pointcuts, even though
this may require to restart the program during one comprehension task,
if new relevant categorisations for objects are discovered during runtime.

4.2 evaluation

In this section we present an evaluation of our approach in terms of im-
provements on code quality, performance characteristics and discuss the
analyses enabled by instance pointcuts. In the code quality discussion
(Section 4.2.1) we present a case study performed on the github android
application. In Section 4.2.2 we present the performance characteristics
of instance pointcuts based not the execution times of add and remove
operations and compare our measurements with equivalent Java code.
We conclude the evaluation section by discussing what kind of analyses
are made possible with instance pointcuts (Section 4.2.3).

4.2.1 Code Quality

github android application study The Git Repository Host-
ing site called github offers a mobile application to access its services
via Android smart phones. We have performed a preliminary study on
this application to show the benefits of using instance pointcuts in a
real-life application.

An Android application consists of Activity objects which are appli-
cation components users can interact with to perform a task. Each activ-
ity is further divided into Fragments, which represents a portion of that
Activity. Fragments have a number of states which mark the beginning
and the end of their lifecycle. The users of github can be associated with
certain organisations, which gives them access to repositories which are
not publicly available but only available through organisation permis-
sions.
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The classes which were affected by the addition of this feature can be
seen on commit with ID 044262d on the git repository of the project 2.
This particular commit includes changes to HomeActivity,
RepositoryListFragment, MembersFragment and UserNewsFragment.
It also adds two new interfaces OrganizationSelectionListener and
OrganizationSelectionProvider. All of these classes except
RepositoryListFragment belong to the same package.

All of the listed fragments start their lifecycle with a call to the
onActivityCreated and they end their life-cycle with a call to the onDetach.
Fragments register themselves as a OrganizationSelectionListener when
they are created to the HomeActivity. In the implementation of these
methods we see the same bookkeeping code repeated, this is shown
in Listing 4.1. The purpose of this code is to listen to the changes of
the selected organisation for the active user and update the related UI
fragments accordingly.

1 [RepositoryListFragment,MembersFragment,UserNewsFragment] extends

Fragment implements OrganizationSelectionListener{

2 ...

3 @Override //Fragment

4 public void onDetach() {

5 OrganizationSelectionProvider selectionProvider =

(OrganizationSelectionProvider) getActivity();

6 if (selectionProvider != null)

7 selectionProvider.removeListener(this);

9 super.onDetach();

10 }

12 @Override //Fragment

13 public void onActivityCreated(Bundle savedInstanceState) {

14 org = ((OrganizationSelectionProvider)

getActivity()).addListener(this);

15 \\rest of the implementation is different in each class

16 ...

2 https://github.com/github/android/commit/044262d
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17 }

19 @Override //OrganizationSelectionListener

20 public void onOrganizationSelected(final User organization) {...}

21 }

Listing 4.1: The piece of code that is repeated throughout the fragment classes

The HomeActivity class implements the OrganizationSelectionProvider

interface which offers the addListener(OrganizationSelectionListener)

and removeListener(OrganizationSelectionListener) methods. The added
listeners are kept in the orgSelectionListeners set. When a user selects
an organisation, each listener is notified in a for loop by calling their
onOrganizationSelected method.

From this implementation we can see that the bookkeeping of these
listeners is scattered among 3 classes, a total of 6 methods. In order
to modularise this concern, we have replaced this listener add/remove
implementation with an instance pointcut which is shown in Listing 4.2.

1 public aspect OrganizationSelectionProviderAspect{

2 static instance pointcut

orgSelectionListeners<OrganizationSelectionListener>:

3 before(call(* RepositoryListFragement.onActivityCreated(..))

4 call(* MembersFragement.onActivityCreated(..))

5 call(* UserNewsFragement.onActivityCreated(..)) && this(instance))

6 UNTIL

7 before(call(* RepositoryListFragement.onDetach())

8 call(* MembersFragement.onDetach()))

9 call(* UserNewsFragement.onDetach()) && this(instance));

10 }

Listing 4.2: Organisation listener bookkeeping with instance pointcuts

This has resulted in the following code quality improvements in the
affected classes.

• The overridden onDetach method is removed from all fragment
classes, since its only purpose was to remove the listeners from
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the provider. This is now managed by the orgSelectionListener in-
stance pointcut. This is a quality improvement since we were able
to eliminate redundant code from these classes. This has reduced
a total of 21 lines of code from three classes.

• The first line of the onActivityCreated method was removed, reduc-
ing 3 lines in total.

• We have removed the OrganizationSelectionProvider interface, the
implementation of its methods and the orgSelectionListeners set
from HomeActivity class, reducing in total 11 lines of code.

• The removal of the OrganizationSelectionProvider interface also
makes the dependency to this class obsolete and makes it possi-
ble to remove this dependency from the affected Fragment classes.
The removal of this interface also simplifies the type-hierarchy.

We were able to localise the bookkeeping of the listener in a single
module resulted in more maintainable code; instead of altering three
different classes the developer can write a single instance pointcut. Be-
sides modularising the implementation of this concern, the solution with
instance pointcuts is also more concise. The 35 lines of the scattered im-
plementation were replaced by 16 lines for an aspect with an instance
pointcut. This reduced the size of the implementation of this concern by
more than 50

4.2.2 Performance Evaluation

We have conducted a performance experiment for measuring the add
and remove operations of instance pointcuts. We also measured the per-
formance of equivalent plain Java code and compared both in terms of
execution time. We have created four micro-benchmarks for measuring
the execution time for each operation with two different cases. These
cases are:
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adding/removing unique objects Adding unique objects to the
instance pointcut set will result in a growing data structure with
objects of cardinality value one, similarly removing these objects
will shrink the data structure.

adding/removing the same object Adding the same object more
than once to the instance pointcut set will result in a set with a sin-
gle element and a cardinality greater than one. The remove opera-
tion will only reduce this cardinality, until the cardinality becomes
zero. Then the object is removed from the set.

We have used the caliper [Goo] micro-benchmarking framework for
measuring the execution times. Caliper provides three measuring instru-
ments; allocation, runtime and arbitrary. Since we were interested in the
execution times, we used the runtime instrumentation. We have used the
following runtime instrumentation options:

• Warmup: This option indicates the minimum time that should
elapse before any measurements are taken. We have used the de-
fault value of 10 seconds as a warmup period.

• Timing Interval: Instead of number of repetitions, caliper takes a
timing interval as an input. Using this value caliper calculates the
number of repetitions for an experiment. Higher values mean more
precision since the benchmark is less vulnerable to fixed costs. The
default value is 500 ms, however we have chosen 1000ms.

• No. of Measurements: Caliper records the final “N” measurements,
we have configured caliper to record 10 measurements

In addition to these options we have enabled the option for running
the garbage collector before each measurement. Note that this does not
guarantee that the garbage collector will run, however we can decrease
the chances of its running during measurements.

We have performed these experiments on a laptop running MacOSX
v10.9.1 with 2.4 Ghz Intel Core i7 processor and 8GB of RAM. We used
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Eclipse IDE (Kepler Service Release 1) for running our benchmarks on
JRE 1.7.0u40 64-bit.

Benchmarks are parametrised to be run with n 2 {1, 10, 100, 1000, 10000}
operations and runs for both instance pointcut and Java implementa-
tions. Therefore each benchmark yields 10 measurements, 5 for the in-
stance pointcut and 5 for the Java implementation. We show these mea-
surements as generated by caliper, the runtime value corresponds to the
time elapsed for n operations and the median of the last ten measure-
ments.

adding the same object The measurements for adding the same
object to the instance pointcut set is shown in Figure 4.6. These results
show that in general Java and instance pointcuts perform very similarly,
with instance pointcuts performing a bit worse occasionally.

Figure 4.6: Benchmark results for adding the same object

adding unique objects In Figure 4.7 benchmark results are shown
for adding unique objects. These results also do not show a big perfor-
mance difference between Java and instance pointcuts.

remove the same object Caliper provides a set-up method which
can be used to prepare the values before each experiment. In this bench-
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Figure 4.7: Benchmark results for adding unique objects

mark we have used this method to populate the data structures, in order
to perform and measure the remove operation. Figure 4.8 shows the re-
sults for this benchmark. In this case Java performs slightly better than
instance pointcuts, however we do not observe a substantial difference.

Figure 4.8: Benchmark results for removing the same object

remove unique objects According to the measurements of this
benchmark (Figure 4.9), we observe similar results as in removing the
same object benchmark.

73



instance pointcuts : discussion

Figure 4.9: Benchmark results for removing unique objects

From these results we conclude that the instance pointcut implementa-
tion of add and remove operations, which are the basic operations for the
book keeping concern, do not introduce a performance overhead. How-
ever these measurements are not sufficient for deducing the overall per-
formance of instance pointcuts. In order to have a better understanding
on instance pointcut performance, we must also perform measurements
for the following features; type refinement, expression refinement and
composition. Due to time limitations these measurements are currently
not available; in future work we will address the performance testing in
more detail.

4.2.3 Enabled Analyses

A declarative syntax such as that of instance pointcuts, generally allows
not to perform various checks, to generate well-placed error or warning
markers and informative error/warning messages. In the following we
discuss checks we deem useful and possible to implement based on our
language.

non-existent/incompatible types If the type declared by the
instance pointcut does not exist, this is a compilation error. Instance
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pointcuts provide an additional check during type refinement; it is a
compilation error if the refinement type is not a subtype of the refer-
enced pointcut’s declared type. In the Java solution the error marker is
placed at the line of the instanceof check, without giving any context
to why the instanceof check is performed. The instance pointcut error
marker is placed at the line of the refinement, with an elaborate error
message explaining the type mistake.

Type compatibility is also an issue while composing instance point-
cuts. If in a composite instance pointcut declaration, the instance type
is explicit, then the type compatibility between the composite and the
component instance pointcuts’ is checked. The compiler infers (see Sec-
tion 3.4.4.3) the appropriate type for every composite instance pointcut,
whether the instance type is explicit or not. The computed type is then
compared to the declared type; the declared type must be the same or a
super type of the computed type. If there is an incompatibility, we put
an error marker at the line where the type was declared, indicating the
composed type is not compatible with the declared type of the compos-
ite instance pointcut.

empty sets The add expression of an instance pointcut is responsi-
ble for populating the instance pointcut set. If the pointcut expressions
defined in the add expressions do not match any join-points then it is
guaranteed that the instance pointcut set will always be empty. This case
is displayed as a compile-time warning which indicates that no objects
will be selected. During the expression refinement, composition of the
new pointcuts and the referenced one may result in non-matching point-
cut expressions.

double selection The instance pointcut syntax allows to select
the same join-point in both before and after events in the same sub-
expression. In Listing 4.3 such a case is illustrated. The Product object is
added before it is applied a discount, and once again after the discount
is applied. This may have two different side effects depending on the
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definition of the hashCode method for the selected type. Either it may
add the object to the instance pointcut set as separate instances or it may
increment the cardinality of the same object twice. The analogous case
exists for the remove expressions. This behaviour is consistent with an
instance pointcut’s regular behaviour, but we still raise a separate warn-
ing for the add and remove cases to notify the developer.

1 static instance pointcut surpriseDiscountDouble<Product>:

2 before(call(* ProductManager.submitDiscount(..))

3 && args(instance, SurpriseDiscount))

4 k
5 after(call(* ProductManager.submitDiscount(..))

6 && args(instance, SurpriseDiscount))

Listing 4.3: Adding the same object before and after the same join-point

expression refinement checks During expression refinement
there is a special case when the refined instance pointcut is referencing a
non-existent event selector and the k boolean operator is used. Assume
that ipc1 only has an add_before expression. While refining this instance
pointcut the developer mistakenly writes the following:

1 static instance pointcut ipc2<T>: add_before:ipc1.add_before

2 add_after: ipc1.add_after k call(..);

This definition refers to the non-existent add_after expression. This is
a compile error since, while the call pointcut is selecting joinpoints, no
objects are bound. This is illegal to have in an instance pointcut expres-
sion. Note that if the operation was && there would be no compile error
since the add_after expression of ipc2 would simply be empty and ip2’s
add expression would only comprise of ipc1’s add_before event selector.

4.3 related work

AO-extensions for improving aspect-object relationships are proposed
in several studies. Sakurai et al. [SMU+

06] proposed Association As-
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pects. This is an extension to aspect instantiation mechanisms in AspectJ
to declaratively associate an aspect to a tuple of objects. In Association
Aspects the type of object tuples are declared with a perobjects clause
and the specific objects are selected by pointcuts. This work offers a
method for defining relationships between objects. Similar to associa-
tion aspects, Relationship Aspects [PN06] also offer a declarative mech-
anism to define relationships between objects, which are crosscutting to
the OO-implementation. Relationship Aspects focus on managing rela-
tionships between associated objects. Bodden et al. [BSH08] claim that
the two above approaches lack generality and propose a tracematch-
based approach. Although the semantics of the approaches are very
similar, Bodden et al. combine features of thread safety, memory safety,
per-association state and binding of primitive values or values of non-
weavable classes. Our approach, also extending AO, differs from these
approaches since our aim is not defining new relationships but using
the existing structures as a base to group objects together for behavior
extensions. Our approach also offers additional features of composition
and refinement.

The “dflow” pointcut [KM04] is an extension to AspectJ that can be
used to reason about the values bound by pointcut expressions. Thereby
it can be specified that a pointcut only matches at a join point when the
origin of the specified value from the context of this join point did or did
not appear in the context of another, previous join point (also specified
in terms of a pointcut expression). This construct is limited to restricting
the applicability of pointcut expressions rather than reifying all objects
that match certain criteria, as our approach does.

Another related field is Object Query Languages (OQL) which are
used to query objects in an object-oriented program (e.g., [Clu98]). How-
ever OQLs do not support event based querying, which selects objects
based on the events they participate in, as presented in our approach. It
is interesting to combine instance pointcuts with OQL. For example in-
stance pointcuts can be used as a predicate in OQL expressions, in order
to select from phase-specific object sets.
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Type States [DF04] allow to define a state chart for a type. This speci-
fies which states an object of that type can be in and what causes state
transitions. Similar to our approach, state transitions are triggered by
runtime events. However, unlike instance pointcuts, in type states an
objects state can only change at method calls where the object is the re-
ceiver; with instance pointcuts, objects life-cycle phases can be defined
more flexibly by referring to any event where the object is in the dy-
namic context, e.g., passed as argument or result value. The purpose of
the type states approach is to facilitate more powerful invariant check-
ing at compile-time, whereas we provide a mechanism to actually track
object sets at runtime. It would be interesting to investigate possibilities
for combining both approaches in the future.

4.4 conclusion

In this part we have presented instance pointcuts, a specialised point-
cut mechanism for reifying phase-specific object sets. Our approach pro-
vides a declarative syntax for defining events when an object starts or
ends to belong to a life-cycle phase. Instance pointcuts maintain multi-
sets providing a count for objects which enter the same life-cycle phase
more than once. Instance pointcut sets can be accessed easily and any
changes to these sets can also be monitored with the help of automati-
cally created set monitoring pointcuts. The sets can be declaratively com-
posed, which allows reuse of existing instance pointcuts and consistency
among corresponding multi-sets. Finally, we have presented our modu-
lar compilation approach for instance pointcuts based on AspectJ and
the ALIA4J Language implementation architecture. ALIA4J provided us
with the flexibility AspectJ lacked in instance pointcut composition and
type refinement.

We have given two examples for the application of instance pointcuts.
The first one is the online shop example, where we have illustrated how
integrating unanticipated concerns into legacy code can lead to scattered
and tangled code. We have especially looked at the case of bookkeeping
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certain objects and how such bookkeeping cannot be modularly handled
by OOP or traditional AOP. We have also shown that solutions in these
paradigms are not reusable.

The second example is the application of instance pointcuts in the pro-
gram comprehension domain by showing an extension to the Eclipse de-
bugger. Our vision is that by using instance pointcuts during debugging,
we will be able to identify objects based on how they are used which is
not observable by the class structure. Inspired by the challenges encoun-
tered while debugging an extension of the Jikes VM’s optimising com-
piler, we devised three scenarios (Section 4.1.1). In the first scenario we
explained how the instance pointcuts concept is useful during debug-
ging; we can easily identify objects that are relevant to the debugging
task by looking if they are contained by a certain instance pointcut. In
the second scenario we explored the use of instance pointcuts with con-
ditional breakpoints; instance pointcuts can be referenced as Sets and we
can observe if an object is added to the instance pointcut set by means
of a conditional expression. In the third and the final scenario we have
utilised the removal feature of instance pointcuts; here instance point-
cuts are used to maintain a set of objects starting from the time they
were created until they were mutated. We also showed how the built-in
joinpoints for add and remove operations can be used to define watch-
points. Our experience showed that despite some limitations, instance
pointcuts are beneficial for program comprehension since they provide
the means to create meaningful runtime categories.

The syntax and expressiveness of instance pointcuts partially depend
on the underlying AO language; this is evident especially in our usage
of the AspectJ pointcut language in the specification of events. Since As-
pectJ’s join points are “regions in time” rather than events, we had to add
the “before” and “after” keywords to our add and remove expressions.
Thus, compiling to a different target language with native support for
events (e.g., EScala [GSM+

11] or Composition Filters [BA01b], the point-
in-time join point model [MEY06]) would influence the notation of these
expressions.
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We think the instance pointcut concept is versatile and can be useful
in various applications. Instance pointcuts provide another dimension
of modularisation which can also be used in conjunction with design
patterns. It eliminates boilerplate code to a great extent and provides a
readable syntax. We believe that the reuse and composition mechanisms
offered by instance pointcuts are beneficial for software evolution since
they make it easy to create tailored variations according to new require-
ments.
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Part III

ZAMK : A N A D A P T E R - AWA R E D E P E N D E N C Y
I N J E C T I O N F R A M E W O R K

In the evolution of complex software usage of third party
components is common practice. While businesses save time
and money by reusing existing components, there is still a
substantial development effort going into the integration of
such components into a given system. In this part we present
our contribution,the zamk framework, which improves the in-
tegration process of externally developed components. For
this framework we have developed an external dependency
injection language called Gluer. This language is used in con-
junction with converters. Converters are reinterpreted adapters,
which are used to convert one type to the other. Gluer is a
converter-aware language, meaning it can convert injected
objects into other types before the injection, given the target
injection field is of an incompatible type. Using zamk frame-
work developers are able to separate the concerns of the com-
ponent integration into adaptation and glueing.





5
ZAMK F R A M E W O R K

5.1 introduction

Software components are self-contained entities with a well-defined in-
terface and behaviour. For two components to co-operate they must be
integrated through a compatible interface [Weg96]. The integration task
also entails creating dependencies between the components, i.e. assign-
ing objects to fields in order to communicate data. The assignment oper-
ation requires that the object and the assigned field are of a compatible
type. When components are developed separately, compatibility may not
hold. Therefore it should be, often manually, established through addi-
tional programming. This is the second challenge identified in Chapter 2.

The problem of incompatible interfaces is a common software engi-
neering problem and a possible solution is captured in the adapter pat-
tern [GHJV95, CMP06]. The adapter pattern describes how to make two
types compatible with each other. When an object makes a reference to a
data value it requires a specific type, which we refer to as the target type.
Another object which represents the desired data and behaviour but is
an instance of the so-called source type, different from the target type, is
made compatible with an adapter. An adapter introduces a level of indi-
rection between the types whose interfaces are incompatible with each
other. An adapter implements the methods of the target type by invok-
ing methods defined in the source type. There are two types of adapters;
class adapters and object adapters. Class adapters use multiple inheri-
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tance to subclass both the source and the target types. Object adapters
wrap the source object and subclass the target type; they implement the
target methods by invoking the methods of the source object.

There are some limitations of the traditional adapter pattern. A class
adapter is easily implemented with a language that supports multiple in-
heritance. Developers using single inheritance programming languages
need to use workarounds to achieve the same effect. For example in
Java multiple inheritance is simulated with the usage of interfaces since
a class can implement multiple of them. In order to inherit from two
concrete types using Java, we need to extract the interface of one of the
types and add this interface to the list of super-interfaces. However, we
do not always have control over source code which would allow these
operations. The implementation of the object adapter pattern is more
flexible, since it only needs to inherit from the target type. In both cases
the adapter class is an additional type that is introduced to the source
code.

The integration code contains a direct reference to the adapter type in-
stead of just the source and the target types, which introduces additional
maintenance efforts. Another problem is related to the reuse of adapters.
The developer may not possess the knowledge of which adapter is suit-
able for the adaptation task at hand. This is a problem when adapters
are not planned to be reusable and documented poorly. Then one has
to search the type hierarchy to find the classes implementing the tar-
get type; among these classes the suitable adapter has to be found. The
developer may even have to identify if the class she found is indeed an
adapter class, if it is not clear from the naming. This is an ad-hoc process
that is error-prone as well as time consuming.

So far we have established that integrating two separately developed
components requires making their interfaces compatible and assigning
object values to the appropriate field thereby building the necessary de-
pendencies. The latter is implemented in the glue code. In component-
based design loose-coupling is an important principle. Dependency In-
jection (DI) [Fow04] is a lightweight method for keeping modules loosely
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coupled by delegating the creation of concrete objects to so-called injec-
tors. This approach allows creating loosely coupled dependencies. When
using the adapter pattern, the injection specification is coupled to the
adapter implementation. This means during development time the adap-
tation and the binding tasks are not independent of each other; the de-
veloper who is writing the glue code should be aware of the adapters
that are available to her.

Let us summarise the problems we have identified above:

P-1 Implementation of the adapter pattern can be hindered by program-
ming language properties.

P-2 The adapter pattern introduces additional dependencies, which in-
creases maintenance efforts.

P-3 Reusing adapters requires additional knowledge and effort from the
side of the developer to be used properly.

P-4 The glue code contains dependencies to the adapter classes, which
hinder loose coupling.

In light of these issues, we have devised the requirements below, which
refer to each of the problems listed above, respectively.

R-1 It must be possible to implement adapters without inheritance. (P-1)

R-2 The adaptations must be performed without creating dependencies
to specific adapter classes. (P-2)

R-3 Adapters must be found automatically given a source object and a
target type. (P-3)

R-4 Glue code must not contain references to concrete adapters; it must
be possible to implement these separately. (P-4)

In order to satisfy these requirements we have designed the zamk

framework, which unites DI with under-the-hood adaptation logic. In our
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Component1

Component2

Cartesian

x: double

y: double

Polar

r: double

theta: Angle

Angle

value: double

+getSin() : double

+getCos() : double

Figure 5.1: UML diagram for the two components

framework we do not employ the traditional adapter pattern but we
have created the concept of converters, which are user-defined classes
that do not have to inherit from a target type to realise the adaptation.
zamk comes with its own DI mechanism that is used with a designated
domain-specific language called Gluer. The DI logic is intertwined with
the adaptation logic which uses the conversion registry to perform au-
tomated adaptation between source and target types. We automate the
adaptation process by exploiting the type hierarchies and provide checks
and context-relevant messages for correct integration. The details of the
framework are explained throughout the chapter.

5.2 motivating example

In the previous section we have identified the problems attached to the
traditional adapter pattern and we have come up with requirements for a
solution that would remedy these problems. This chapter focuses on the
object adapter pattern, since Java does not support class adapter pattern
very well. However the identified problems apply to both of the adapter
patterns.

In this section we illustrate the problems mentioned above with an ex-
ample. Assume we have a plot drawing software which uses the Carte-
sian coordinate system to represent the points in the plot. The software
includes a data component which contains a class called Cartesian which
has two fields x, y, that represents the values on the x-axis and y-axis
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respectively. This class also includes getters and setters for these fields
(Component1 in Figure 5.1). A new requirement is received which states
that the software must also support polar coordinates, and the user must
be able to view plot points in a selected view (Cartesian or Polar).

In order to support polar coordinates, a new component which con-
tains classes to represent such data is introduced (Component2 in Fig-
ure 5.1). The class Polar contains two fields, r representing the radius
and theta of type Angle. This component is to be integrated with Component

1. Consider we want to integrate both components using the traditional
adapter pattern. It should be possible to obtain the Polar representation
of any Cartesian object by using an adapter. This solution is discussed in
the following.

An abstract view of the traditional object adapter pattern is shown in
Figure 5.2a. The adapter pattern relies on inheritance and adds a level
of indirection between the Client and the Target. The application of this
pattern to the example case requires creating a Cartesian to Polar adapter
(Cartesian2PolarAdapter) which takes a Cartesian object as an adaptee and
extends the Polar class to override its methods (Figure 5.2b). An imple-
mentation for this adapter is given in Listing 5.2c.

A conventional implementation of the adapter pattern requires boil-
erplate code. An improvement over this implementation is proposed
by Hannemann and Kiczales [HK02]. In this study they propose a re-
usable implementation to the class adapter pattern using inter-type dec-
larations. According to the auxiliary code they provide with this study,
they propose the adaptee class should subclass the target class, which
results as the diagram shown in Figure 5.3a. For our example case the
Cartesian class will directly have to subclass the Polar class and imple-
ment its method using its x, y field values. This is depicted in the as-
pect shown in Figure 5.3c. The inter-type declaration on line 3 declares
the inheritance relation and the subsequent method implementations are
woven into the Cartesian class.

The obvious problem with this implementation is that, since Polar is
a concrete type, it would quickly become unusable due to Java’s single
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Client

Target

+ Request()

Adaptee

+ SpecificRequest()

Adapter

+adaptee : Adaptee

+ Request()

(a) Abstract view of the object adapter
pattern

Client

Polar

+ getR()

+ getTheta()

Cartesian

+ getX()

+ getY()

Cartesian2PolarAdapter

+adaptee : Cartesian

+ getR()

+ getTheta()

(b) Concrete view of the object
adapter for the example case

1 public class Cartesian2PolarAdapter extends Polar{

2 Cartesian adaptee;

3 public Cartesian2PolarAdapter(Cartesian c) {

4 this.adaptee = c;

5 }

6 public double getR()

7 {

8 return Math.sqrt(Math.pow(adaptee.getX(), 2) +

Math.pow(adaptee.getY(), 2)));

9 }

10 public Angle getTheta()

11 {

12 return new Angle(Math.atan(adaptee.getY()/adaptee.getX())));

13 }

14 }

Listing 5.1: Implementation

(c) The implementation for the Cartesian2PolarAdapter

Figure 5.2: The diagram of the object adapter and the corresponding Java im-
plementation
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Client

Target

+ Request()

Adaptee

+ SpecificRequest()

+ Request()

(a) Abstract view of the object
adapter pattern with inter-
type declarations

Client

Polar

+ getR()

+ getTheta()

Cartesian

+ getX()

+ getY()

+ getR()

+ getTheta

(b) Concrete view of the
aspect-oriented adapter
pattern for the example
case

1 public aspect Cartesian2PolarAdapter {

3 declare parents: Cartesian extends Polar;

5 public double Cartesian.getR()

6 {

7 return Math.sqrt(Math.pow(this.getX(), 2) +

Math.pow(this.getY(), 2));

8 }

10 public Angle Cartesian.getTheta()

11 {

12 return new Angle(Math.atan(this.getY()/this.getX()));

13 }

14 }

Listing 5.2: Implementation

(c) The implementation for the Cartesian2PolarAdapter in AspectJ

Figure 5.3: The diagram of the object adapter and the corresponding Java im-
plementation
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inheritance. Another limitation comes from the semantics of inter-type
declarations. Only sibling types, i.e. types which share a parent class,
can be used in an inter-type declaration. In this example both classes’
super-type is Object, which allows us to use the inter-type declaration.

Up to now, we have explained the issues related to the implemen-
tation of adaptation concern, we also need to bind the newly added
component to our application. In order to bind the polar coordinates
into our plotting software, we need to alter some code. According to
the selection made in the GUI, the information box should display the
coordinate value in the correct format. An example for the integration
code is given in Listing 5.3. On line 7 we see an explicit reference to
the class Cartesian2PolarAdapter; this adapter is introduced at the begin-
ning of the section in Figure 5.2c. Referring to a low-level implemen-
tation type hinders software evolution because we need to change code
when another adaptation should be used. The other issue is that in order
to reuse existing adapters, the developer has to have knowledge about
these adapters, or she needs to search to see if a suitable one exists. The
explicit reference on line 7 is also a disadvantage for the binding process
since how the Polar field is initialized is fixed with this reference.

1 public void viewPointValue(Point selected){

3 if(GUI.format == CARTESIAN)

4 GUI.createNewValueBox(selected.loc(),

selected.getCoordinates().toString());

5 else if(GUI.format == POLAR)

6 {

7 Polar p = new Cartesian2PolarAdapter(selected.getCoordinates());

8 GUI.createNewValueBox(selected.loc(), p.toString());

9 }

10 }

Listing 5.3: The integration of Polar coordinates

In this section we have used the plotter example to illustrate the prob-
lems we have mentioned in Section 5.1. Firstly we have described how
programming languages can affect the implementation of the adapter
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pattern by using Java and AspectJ (P-1). Secondly we have shown the dis-
advantages of introducing adapter dependencies in the integration code,
by means of a new extension to the plotter software (P-2). Thirdly, using
the same example, we have discussed why the developer needs adapter
specific knowledge and how it slows down the integration process (P-3).
Lastly, we have discussed the disadvantage of having an explicit depen-
dency in the glue code (P-4).

5.3 the zamk framework

In this section we explain the details of the zamk framework which is
designed according to the requirements specified in Section 5.1.
zamk is a development framework specifically tailored for reusable

adapters and adapter-aware DI. It offers a new and a lightweight way
of defining adapters; these lightweight structures are called converters.
Converters contain the logic that is used to convert one type to another.
Typically this logic defines how an object of a target type can be ini-
tialised using the values provided by an object of a source type (e.g.,
calculating the polar coordinate values from Cartesian values). Convert-
ers are provided by the developer and they do not need to subclass any
of the types to implement adaptations. Converter classes are stateless.
The zamk runtime is responsible for finding the correct converter, given
a source and a target type. An adaptation requires an intermediate object
which references the adaptee and extends the target type; a conversion
is merely a method call, to which the adaptee is given as a parameter
and which returns an object of the target type. This means the only addi-
tional dependency we have to include in the implementation is the zamk

runtime API. Since the user does not have to refer to specific adapters,
zamk allows separation of adaptation and binding concerns during in-
tegration. zamk also comes with its own binding language, called Gluer,
which uses DI under-the-hood. Gluer is a domain-specific language and
its declarative nature allows compile-time checks. The user is flexible in
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how she chooses to use zamk, she can either use the Gluer language or
she can call the runtime API directly.

Figure 5.4 shows an overview of the steps and the user-defined input
that are necessary to perform adaptation using zamk.

development time The goal of the development time is to provide
the necessary input to zamk. In Figure 5.4 we show four inputs that are
fed to the zamk compile-time; they are (in the order shown in Figure 5.4):

Gluer files : Gluer files contain the Gluer statements that define which
objects are going to be injected to which fields. Gluer statements
are used to generate conversion requests, which are zamk API calls
that trigger the zamk adaptation workflow. The Gluer language is
discussed in Section 5.3.2.1.

Application Classes : These classes are scanned to retrieve information for
integration. The retrieved information is used in checking. Appli-
cation classes are also instrumented with conversion requests that
are derived from Gluer statements.

Converters : Converters contain methods necessary to convert one type
to the other. They are annotated in order to be registered by zamk

runtime. These are discussed in Section 5.3.2.2.

Converter Precedence Declarations : These are used to resolve conflicts
when more than one conversion is found for a specific request. In
this case the conversion which is contained by the converter class
that has the higher precedence is used.

It is also possible to write plain Java code that calls the zamk API
directly. However these statements are not processed during compile-
time. That is why we do not list them as compile-time inputs. During
the final compilation phase, they are compiled with all the code that is
provided by the user and generated by zamk.
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Figure 5.4: An overview of the zamk framework
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compile-time The goal of the compile-time stage is to check the pro-
vided input and generate the necessary code using the information de-
rived from the input. Once the input is provided, the zamk compile-time
workflow starts. This workflow is composed of the following sequential
phases as in upper-half of the Figure 5.4:

Checking : There are two checkers; one responsible for checking the
Gluer files and the other for converter classes. The gluer checker
performs the syntax checking; it also checks if the references made
in the Gluer statements actually exist in the application code. The
converter checker performs type checking and well-formedness
checking. If any of these checks fails, a compile-error is produced.

Conversion registry : When the converter checking is finished without
any problems, zamk builds a conversion registry1 in the form of a
data structure to be used in the next step of compile-time work-
flow: code generation. During this phase the conversion registry
data structure is also serialised in XML format creating the reg-
istry.

Code Generation: This step consists of two separate generation processes.
Byte-code instrumentation is responsible for inserting zamk conver-
sion requests to the places indicated as the binding points defined
in the Gluer statements, i.e implementing the DI. The conversion
registry that is created in the previous step is used to generate the
conversion aspects. The conversion aspects are responsible for moni-
toring the source objects which are associated with a target object.

Final Compilation: When the compile-time workflow is complete a final
compilation step is performed, which makes sure the instrumented
application classes and the generated files do not contain any er-
rors. At the end of this step we obtain zamk runtime ready code, in
Figure 5.4 we assume the final compilation product is executable.

1 One converter class may include multiple conversions
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The zamk compile-time produces two outputs; registry which will be
loaded during runtime initialisation and the compiled code of zamk gener-
ated classes and application classes.

runtime During runtime zamk processes conversion requests. The
zamk runtime consists of two parts, a one-time initialisation and a runtime

workflow which is executed for every conversion request (lower-half of
Figure 5.4).

Initialisation: The zamk runtime starts with an initialisation step, which
loads the conversion registry that is serialised during compile-time.
The loading process produces a data structure called runtime con-
version registry, which is used by the runtime workflow to locate
conversions.

Runtime workflow : The compiled program contains zamk conversion re-
quests which trigger the conversion finder. A conversion request
contains the source object and the desired target type to which
the source object should be converted. The find conversion process
searches for the correct conversion by using the type information
included in the conversion request. If a suitable conversion cannot
be found, zamk produces a runtime exception indicating the error.
When a conversion is found, one of two things can happen: 1. If
the requested conversion was never performed before for the given
source object and the target type, the suitable conversion method is
invoked and an object of target type is created. This pair of objects,
i.e. the provided source object and the associated target object, is
referred to as a source–target pair. 2. Alternatively, zamk may find
that a request to the same target type was processed before with
the given source object. In that case the existing target object is
retrieved and returned.
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5.3.1 Using Conversions Instead of Adapters

In the traditional adapter pattern, the adapter class refers to an adaptee
object; if this adaptee’s value is changed, it directly affects the return
values of the methods that are implemented by the adapter. In order to
eliminate the dependency to the adapter type, we have created the no-
tion of conversions. Conversions are defined in user-provided converter
classes. Conversions simulate adaptation as a one-time conversion and
a series of updates during an object’s life-cycle.

A conversion consists of two parts. The first part consists of two user-
defined methods: a convert and an update method. The second part is
an aspect, called conversion aspect, generated by zamk which contains a
hash-map of source (adaptee) and target objects. The conversion aspect
is generated during compile-time2. The responsibility of this aspect is to
monitor the source (adaptee) objects and update the target objects if a
source object changes. The update operation is performed by calling the
user-defined update method. It is also possible to have two-way adap-
tations, in which case the conversion aspect is responsible for keeping
track of conversion in the opposite direction.

In Figure 5.5a the first step of the conversion process is shown. A new
conversion is requested by giving a source object and a target type. In
the traditional adapter pattern this source object is the adaptee and an
adapter which is a subtype of the target type is instantiated that ag-
gregates this source object. In our conversion process this source object
is passed onto the convert method of an appropriate conversion (auto-
matically found by the framework, see Section 5.3.3.3) and this method
returns the corresponding target object, which is initialised according
to the values provided by the source object. When a new target object
is created, the zamk runtime registers the source-target pair in a map.
This map represents the has-a relationship between the adapter and the
adaptee.

2 Refer to the code generation step of Figure 5.4
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(a) A new adaptation request (b) Keeping source and target objects syn-
chronized

Once a target object is linked to a source object, they are kept synchro-
nised. This is ensured by the generated conversion aspect. The conver-
sion aspect monitors the events which change the source objects, and
when such an event is encountered it retrieves the corresponding target
object. Then it triggers the update method in the converter class to update
the target object that is linked to the changed source object.

In this method of adaptation, there is no need to create an intermediate
adapter type. The converter directly creates an object of the target type
and keeps it up-to-date. As we explain in Section 5.3.2, the user only has
to define a conversion in a converter class.

A limitation of converters is the case where no public constructors or
fields are available for the target type. A traditional object adapter does
not have this limitation, since it extends the target type and has access to
protected members as well as the public ones. In order to workaround
this limitation it is possible to declare an adapter as a converter. An
example implementation can be seen in Listing 5.4. Note that this imple-
mentation may still run into limitations in the update method caused by
private fields, i.e. hidden object state.

1 @Converter

2 public class Cartesian2PolarAdapter extends Polar{

3 Cartesian adaptee;

4 public Cartesian2PolarAdapter(Cartesian c) {

5 this.adaptee = c;

6 }

7 public double getR(){..}
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8 public Angle getTheta(){..}

9 @Convert

10 public static Polar cart2polar(Cartesian c){

11 return new Cartesian2PolarAdapter(c);

12 }

13 public static void updatePolar(Polar registryObject, Polar

newValue){..}

14 }

Listing 5.4: An object adapter defined as a converter for converting a Cartesian
object to a Polar object

5.3.2 Compile-time

In this section we explain the elements and modules that are involved
during the compile-time of the framework. In Figure 5.5 a simplified ver-
sion of the compile-time workflow is shown. In this figure we have num-
bered the steps taken during compile-time, since they are performed
sequentially.

As mentioned before, the developer is responsible for providing con-
verters that are specific to her application. The converters are required to
adhere to a specific structure, which is discussed in Section 5.3.2.2. The
correctness of the converters are checked by the process Check Converters,
in the Checking step. All of the processes in this step take the application
classes as input, since the checking operation uses these classes to inves-
tigate the existence of the dependencies. Gluer files are checked by the
Check Gluer Statements process. The checking of the gluer files and the
inputs/outputs are shown in dashed style, since providing Gluer files is
an optional step. As mentioned before it is also possible to call zamk API
directly from Java.

Once the provided input is checked for errors, the checked converter
classes are input to the Build Conversion Registry process, inside the Cre-

ating the Conversion Registry step. The processes included in this step
are also numbered, since the Serialize Registry process requires the con-
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Figure 5.5: The compile-time workflow and dataflow of zamk

version registry data structure produced by the Build Conversion Registry

process.
The conversion registry data structure is also passed to the third step

Code Generation, which contains two processes. First one is the optional
process Byte-Code Instrumentation, which takes the checked Gluer files
as input. This step is not performed if no Gluer files are provided. The
second one is the Generate Conversion Aspects process, which takes the
conversion registry as input and outputs the conversion aspects.

The fourth and the final step is the compilation of all code that is
generated by zamk and provided by the developer.

5.3.2.1 Gluer DSL

The Gluer language is a concise DSL that is designed to declare depen-
dencies between fields and objects. We have developed the Gluer lan-
guage to offer an external, non-intrusive way of declaring bindings. Es-
sentially Gluer is an external DI declaration language which creates the
objects to be injected and is connected to an adaptation logic which can
process the created objects before the injection happens.

A parser for Gluer (we use the gluer extension to denote Gluer speci-
fications) is implemented in Clojure [Hic08], a Lisp dialect compiled for
the JVM [RHB13]. One of the design goals was to have the DSL grammar
to be easily extendible at compile-time, and even at runtime. This way,
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support for new keywords and their behaviour can be added by loading
plugins at runtime, making the framework extendible.

We make use of Clojure’s dynamic dispatch features to facilitate this
extensibility with respect to the types of target and source selection state-
ments 3.

syntax and semantics We chose the keyword glue instead of inject
since Gluer does more than DI.

The syntax of the Gluer statements is defined as follows:
glue <target-field> with

[[new|single] <source-class> | retval <Java-expr>]

[using <converter>]

<target-field> The target field is a fully qualified name of a non-
static field of a class. It can refer to any object type.

<source-class> The source class represents the fully-qualified name
of the class to be instantiated and injected to the target field. There
are several options for creating this objects.

new The new statement is followed by a fully classified name of
a class. This means, whenever an object is to be injected, it
should be newly created using the default constructor of the
source class.

single Similar to new, single statement is followed by a fully qual-
ified name of a class, which is instantiated when an injection
is triggered. The difference is instead of creating a new object
each time, a single object is reused among injections.

retval Short for “return value”, this keyword is followed by a Java
expression, which returns the object we would like to inject. When

3 The source code of the Gluer parser is available on GitHub:
https://github.com/aroemers/gluer. Note that this version corresponds to the
language explained in our PPPJ’13 paper
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an injection is triggered, the method is called and the returned
value is glued to the injection field.

using The using keyword is optional and can be used to override the
automated converter finding logic. With this keyword the user can
point to a specific converter to be used while converting the source
object to the target type, before the injection.

checks zamk performs some compile-time checks to ensure the cor-
rectness of the Gluer statements. The checks which result in compile
errors contain specific information about the place and the cause of the
error.

• Target-field is checked to see if it actually exists.

• For creating the source object with the new and single keywords,
the framework requires that the source class contains a public
no-argument constructor. For the retval keyword, the framework
checks if the referred method exists.

• The using keyword triggers two checks. The first one checks if the
referred converter exists and the second one checks if any of the
conversions in that converter is suitable for converting from the
source class to the target field.

• If the Gluer statements are error free up to this point, then a conflict
check is performed to see if any two Gluer statements try to inject
into the same field.

5.3.2.2 User-defined Converters

The users of zamk are responsible for creating converters.
A converter satisfies three important requirements:

1. It must be annotated with the @Converter annotation
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2. It has to include at least one conversion which is composed of two
static methods:

a) A convert method that is annotated with @Convert. This method
takes a single parameter and must return an object value.

b) An update method that is annotated with @Update. This method
takes two parameters of the same type and does not return
any value.

3. There cannot be two convert methods that have the same argument
and return types in a single converter. The same is true for the
update method.

Since the methods are annotated there are no restrictions imposed
by zamk on the method naming. The convert method contains the logic
for converting a source object to a target object. It takes a source object
as its single argument and creates the corresponding target object. This
method is invoked by zamk when an adaptation is requested for a new
source object, i.e a source object that has not been adapted before to
a given target type. If the requested adaptations have been performed
before and zamk has a matching source–target pair in the registry, then
the existing target object is returned.

The update method contains the logic for updating a target object.
It takes two arguments of the type target; the first is the existing reg-
istry object which will be updated due to its associated source object’s
state change. The second argument is the updated state of the registry
object based on the new state of the associated source object. In the up-
date method, the developer specifies how an object of the target type is
assigned a new state. The reason we update the values of an existing
object is, if we simply replace the object with a new one then the depen-
dencies to the old object will be outdated. Since the references to this
object would still point to the old version, whereas the new version is
stored in a new address location, unknown to the dependents of the old
one.
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It is also possible to declare two-way conversions in a converter class.
For a conversion from A-to-B, if the inverse conversion B-to-A is defined
in the same converter class, then zamk registers this as a two-way conver-
sion.

Referring back to our example given in Section 5.2, a user-defined
adapter for the Cartesian-Polar conversion that conforms to the require-
ments above can be defined as shown in Listing 5.5. In this example we
have defined two methods; cart2polar which is annotated as the convert
method. It takes a source object of type Cartesian and returns a Polar

object, the Polar object is created using the source object (lines 6 –8). The
second method is updatePolar, which updates the registryValue Polar

object using the field values of the newValue Polar object. If we add the
convert and update methods for Polar to Cartesian conversion to the
converter in Listing 5.5 then zamk will register a two way conversion
between these types. From the developer’s perspective implementation
requirements do not change, zamk handles the operations required to
keep converted objects synchronized.

1 @Converter

2 public class Cartesian2PolarUser{

3 @Convert

4 public static Polar cart2polar(Cartesian source)

5 {

6 double r = Math.sqrt(Math.pow(source.getX(), 2) +

Math.pow(source.getY(), 2))

7 Angle a = new Angle(Math.atan(source.getY()/source.getX()));

8 return new Polar(r,a);

9 }

10 @Update

11 public static void updatePolar(Polar registryObject, Polar

newValue)

12 {

13 registryObject.r = newValue.r;

14 registryObject.the = newValue.the;

15 }
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16 }

Listing 5.5: A converter defined for converting a Cartesian object to a Polar
object

This converter can additionally contain include methods to convert
from different types. The @Converter annotation simply marks a class to
be found by zamk. When zamk finds a converter class, it expects that it
has one or multiple pairs of convert and update methods. If a convert
method is found to be without an update method or vice versa, this
results in a compilation error. The convert-update method pairs must
be declared in the same converter. zamk does not merge methods from
separate converter classes.

When a pair of convert and update method is found, type checks are
performed. In order to register a conversion zamk looks at the convert
method’s source (single parameter) and target (return) types. The accom-
panying update method must take arguments of exactly the target type,
since zamk is only able to pair an update method to a convert method by
looking at the argument types. Otherwise a compilation error indicating
the situation is given to the user.

5.3.2.3 Conversion Registry

During compile-time a converter registry is created and serialised using
the annotated converter classes.

This procedure assumes the converter class is structurally correct, i.e.
the methods are properly annotated and there is exactly one matching
update method for each convert method in a converter. The createReg-
istry procedure first finds all classes annotated with @Converter. From
each converter class it finds the convert and update methods and puts
them into separate lists. For each convert method found in the converter
the variables targetType (the return type of the convert method) and
sourceType (the argument type of the convert method) are initialised.
Then the matching update method is found by iterating over the list of
update methods and comparing their argument with the target types.
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Procedure 1 Creating the conversion registry
1: procedure createRegistry

2: converterClasses all classes annotated with @Converter
3: for all class 2 converterClasses do

4: convertMethods @Convert methods in class

5: updateMethods @Update methods in class

6: registryPerClass empty set
7: for all convertMethod 2 convertMethods do

8: sourceType the argument type of convertMethod

9: targetType the return type of the converMethod

10: for all updateMethod 2 updateMethods do

11: if updateMethod.argumentType = targetType then

12: conversion  (sourceType, targetType,
convertMethod, updateMethod)

13: add conversion to registryPerClass

14: end if

15: end for

16: end for

17: registerTwoWayConversions(registryPerClass)
18: add (c.FQN, registryPerClass) to registry

19: end for

20: serialise(registry)
21: end procedure
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When an update method is found the record of the conversion is created
and registered.

The procedure for creating the converter registry can be seen in Pro-
cedure 1. In this procedure the outermost for loop is iterating over all of
the classes that are annotated with @Converter. The two inner for loops
are for finding the convert - update pair per converter class. Once these
are found a conversion is created and added to registryPerClass set.

The registryPerClass data structure contains the list of conversion

items per converter class. A conversion entry consists of the source and
the target types, the name of the convert and update methods. The up-
date method included in the created conversion are removed from the
corresponding lists. When all conversions in a converter is found, the
registryPerClass for a single converter class is complete. However at
this point the registryPerClass does not contain any information about
two-way converters.

The registerTwoWayConversions (shown in Procedure 2) procedure pro-
cesses the registryPerClass list and changes its contents if it contains
any two-way conversions. This procedure iterates over the conversion
list registryPerClass and tries to find conversions which have the in-
verse source and target types. Once a pair of such conversions are found,
a newConversion which contains the source and the target types and
the convert and update method names of both conversions is created.
The newConversion items are collected in a separate set called
newRegistryPerClass and the individual conversions forming a two-
way conversion are marked in the registryPerClass list. After all two-
way conversions are found, the marked entries from registryPerClass

are removed and the new entries collected in newRegistryPerClass are
added to list registryPerClass. This procedure is also responsible for
assigning the unique IDs to each conversion, which is done in the for
loop shown on line 16. This unique ID is later used in the aspect genera-
tion and is a combination of the converted types and the converter class’
simple name which contains this conversion. Once the registryPerClass

list is in its final form it is mapped to the registry with the converter’s
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fully-qualified name as the key. After the list of converters is exhausted
the registry is fully populated. The last operation is the serialisation of
the registry to an XML file, which is done by the serialise operation at
the end of the Procedure 1.

Procedure 2 Finding the two-way conversions
1: procedure registerTwoWayConversions(registryPerClass)
2: newRegistryPerClass empty set
3: for all unmarked x 2 registryPerClass do

4: for all unmarked y 2 registryPerClass do

5: if y.sourceType = x.targetType then

6: if y.targetType = x.sourceType then

7: newConversion  (sourceType, targetType,
x.convert, x.update, y.convert, y.update)

8: mark x and y

9: add newConversion to newRegistryPerClass

10: end if

11: end if

12: end for

13: end for

14: remove marked conversions from registryPerClass

15: newRegistryPerClass newRegistryPerClassregistryPerClass

16: for all conversion 2 registryPerClass do

17: assign uid to conversion

18: end for

19: end procedure

The registry is serialised as an XML file, with the format shown in
Listing 5.6. The XML structure adheres to the converter class structure;
multiple conversion tags are enclosed with a converter tag, which takes
the fully-qualified name of the converter as a value. The conversion
tag marks if the conversion is a two way conversion and contains the
source–target types for the conversion, and the convert–update method
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1 <converter = [FQN]>

2 <conversion uid=".." twoway = [true|false]>

3 <source>[source-type]</source>

4 <target>[target-type]</target>

5 <convert value = "1">[convert-method]</convert>

6 <update value = "1">[update-method]</update>

7 <!--For two-way conversions-->

8 <convert value = "2">[convert-method 2]</convert>

9 <update value = "2">[update-method 2]</update>

10 </conversion>

11 <conversion...

12 </converter>

Listing 5.6: The XML code for a registry item

pair for each conversion direction (source-to-target and target-to-source).
The convert and update tags contain the method names for convert and
update methods respectively. The tags marked with 1 are the methods
responsible for the conversion from source-to-target, and following tags
marked with 2 are the convert and update methods for the inverse con-
version, if the conversion is indeed a two way conversion.

5.3.2.4 Code Generation

There are two separate code generation modules included in zamk. The
first one is the byte-code generation and weaving module which is used
to generate code from Gluer statements. The second one is the aspect
generator, which uses user-defined converters to generate conversion
aspects for each converter.

byte-code generation and instrumentation The Gluer state-
ments are parsed and transformed into Javassist [CN03, Chi13] library
calls, which is used to insert byte-code into class files. Since Gluer is a
proof of concept implementation it only supports constructor injections;
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1 public abstract aspect ZamkAbstractAspect<T, U> {

2 pointcut updateObserver(T obj): set(* T.*) && target(obj);

3 pointcut updateObserver2(U obj): set(* U.*) && target(obj);

4 Map<T, U> map;

5 after(T obj): updateObserver(obj)

6 {

7 if (map.containsKey(obj)) {

8 this.update(obj);

9 }

10 }

11 abstract <T> void update(T obj);

12 }

Listing 5.7: The abstract reusable aspect ZamkAbstractAspect

the target field of the injection is initialized during object creation with
this type of injection. It is also possible to extend the grammar and the
byte-code generator to implement setter injections.

aspect generator For each conversion in a user-defined converter
a specialized aspect is generated. Every generated aspect extends the
abstract aspect ZamkAbstractAspect. ZamkAbstractAspect uses the generics
support in AspectJ to define a reusable aspect. This generic aspect is
shown in Listing 5.7. The pointcut updateObserver selects the join-points,
where the fields of an object of generic type T are set. The pointcut
updateObserver2 does exactly the same thing for the type U. This point-
cut is used when an aspect is generated for a two-way conversion. This
aspect also declares a map, from T to U; i.e. from source to target type.
The after advice between lines 5– 10, checks if the map contains the obj

and calls the abstract method update. The update method is generated
specific to each aspect.

The template for the generated aspect is shown in Listing 5.8. [simpleName]
is the user-defined converter’s class name. We concatenate the source
and the target type names to create [source-type]2[trgt-type] and
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1 public privileged aspect

[simpleName][source-type]2[trgt-type]GenAspect extends

ZamkAbstractAspect{

2 private static String aspectUID = [..];

3 public [name][source-type]2[trgt-type]GenAspect() {

4 ZamkRuntime.register(aspectUID, map);

5 }

6 map = new WeakHashMap<[source-type], [trgt-type]>();

7 @Override

8 <[source-type]> void update([source-type] obj){

9 [name].[update-method](map.get(obj),

[name].[convert-method](obj));

10 }

11 }

Listing 5.8: The code generation template for producing an adaptation-specific
aspect

GenAspect at the end of [name]. Since a single converter class can include
multiple conversions, the aspect names also include the type informa-
tion in their names. This naming convention provides a unique fully-
qualified name for each generated aspect.

Each aspect has a unique ID called aspectUID (line 2) and a constructor
which is called to create a singleton instance of the aspect (lines 3–5).
The aspectUID is the conversion unique ID which is assigned during the
generation of the conversion registry and is the fully-qualified name of
the aspect. Inside this constructor the aspect registers its map to the zamk

runtime with its unique ID; this map is used for storing the source–target
pairs. The instantiation of the inherited field map is shown on line 6. It is
constructed using generics notation; the [source-type] is the type of the
source object and the [target-type] is the type of the target object. These
types are determined by looking at the argument type and the return
type of the convert method, respectively. The overridden update method
is generated to call the update method of the conversion (lines 8– 10).
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Note that the update method of a conversion takes two arguments of
the target type, the old value and the new value. In the override update

method of the aspect, this is used as follows; the first argument, the old
value, is retrieved from the map by using the source object. The new
target object value is generated by calling the convert method on the
changed source object. Then these values are passed as arguments to the
update method of the conversion.

1 public privileged Cartesian2PolarUserCartesian2PolarGenAspect

extends ZamkAbstractAspect{

2 private static aspectUID = "Cartesian2PolarUserCartesian2Polar";

3 Cartesian2PolarUserCartesian2PolarGenAspect()

4 {

5 ZamkRuntime.register(aspectUID, map);

6 }

7 map = new WeakHashMap<Cartesian, Polar>();

9 <Cartesian> void update(Cartesian obj)

10 {

11 Cartesian2PolarUser.updatePolar(map.get(obj),

Cartesian2PolarUser.cart2polar(obj));

12 }

13 }

Listing 5.9: The aspect generated for the Cartesian to Polar converter

The generated aspect for the plotter example’s converter shown in List-
ing 5.5 is shown in Listing 5.9. The updateObserver pointcut, declared in
the parent aspect, monitors all the Cartesian objects and selects the join-
points where they are changed. The update method, calls the updatePolar

method of the Cartesian2PolarUser converter to update the correspond-
ing Polar object (line 9).

In case of two-way conversions the generated aspect slightly changes.
Instead of a WeakHashMap we use a HashBiMap [B+]. A HashBiMap has two
underlying HashMaps with inverse type parameters and it preserves the
uniqueness of its values as well as its keys. The constructor of the aspect
does not change.
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For two way conversions we use both of the pointcuts declared in
the parent abstract aspect ZamkAbstractAspect. For the second pointcut
updateObserver2 we generate the corresponding advice. Also we gener-
ate a second update method for calling the conversion in the opposite
direction. The resulting two way aspect for the plotter example is shown
in Listing 5.10.

1 public privileged Cartesian2PolarUserCartesian2PolarGenAspect

extends ZamkAbstractAspect{

2 private static aspectUID = "Cartesian2PolarUserCartesian2Polar";

3 Cartesian2PolarUserCartesian2PolarGenAspect()

4 {

5 ZamkRuntime.register(aspectUID, map);

6 }

7 map = HashBiMap.create<Cartesian, Polar>();

9 after(Polar p): updateObserver2(p)

10 {

11 if(map.inverse().containsKey(p){

12 update2(p);

13 }

14 }

15 <Cartesian> void update(Cartesian obj)

16 {

17 Cartesian2PolarUser.updatePolar(map.get(obj),

Cartesian2PolarUser.cart2polar(obj));

18 }

19 <Polar> void update2(Polar obj)

20 {

21 Cartesian2PolarUser.updateCartesian(map.inverse().get(obj),

Cartesian2PolarUser.polar2cart(obj));

22 }

23 }

Listing 5.10: The aspect generated for the Cartesian to Polar two-way converter
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Figure 5.6: The process triggered by a conversion request

5.3.3 Runtime

The zamk runtime is triggered by conversion requests. There are two
ways to create such requests; the first one is the Gluer statements which
are transformed into zamk API calls in the byte-code, the second one
is including direct references to the zamk API in the base-code. Both of
these operations trigger the same conversion finding process.

Figure 5.6 shows how zamk processes a conversion request. For each
request the appropriate conversion is found by the Find Conversion pro-
cess. When this process completes successfully, the conversion map of
the found conversion is retrieved. If the source object already exists in
the conversion map, the corresponding target object is retrieved. Other-
wise a new target object is created by invoking the convert method of
the conversion. The conversion map is also updated to include the new
source–target pair. Once the desired target object is created or retrieved
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(in case the given source object is already associated with a target ob-
ject), it is returned to the owner of the request. The zamk runtime is also
responsible for managing source–target object pairs, by monitoring the
source objects and updating the maps accordingly.

5.3.3.1 Initialization

In order to process conversion requests, zamk performs a one-time ini-
tialisation step at the beginning of the runtime which consists of loading
the conversion registry and conversion aspect registration.
zamk creates a registry of conversion during compile-time (Section

5.3.2.3). At the beginning of the runtime this registry is loaded by parsing
the XML file which contains the conversion definitions. As mentioned be-
fore the XML file contains data about two kinds of conversions, one-way
and two-way. Each <conversion> tag is mapped to a Conversion object,
which is the parent type for OneWayConversion and TwoWayConversion.

From the conversion data two separate HashMaps are generated;
conversionMap and sourceMap. The conversionMap contains the Conversions

mapped by their unique IDs. The sourceMap is mapping from the source
type of the conversion to a list of unique IDs of conversion which convert
from the source type declared as the key. The sourceMap is constructed
to avoid iterating over the whole conversionMap while searching for a
conversion.

Conversion aspects register their source–target maps during initializa-
tion. This is done by calling the register method of the ZamkRuntime in
the constructor of the aspect. The aspects are registered with the unique
id and their map. Even though the maps are declared and initialized
in the conversion aspects, the contents of the maps are managed by the
ZamkRuntime.

5.3.3.2 zamk Conversion Requests

A conversion request passes on the source object and a desired target
type, in return zamk runtime provides an object of the target type which
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is initialized based on the value of the source object. The conversion re-
quests are communicated to zamk by calling the getConvertedValue(Object,

Class<?>) method, which is a static method of ZamkRuntime. The pseudo
code for the getConvertedValue method is shown in Procedure 3. The
first step is to find the suitable conversion for the given input by call-
ing the findConversion method (line 3). If this operation is successful,
the unique ID of the found conversion is returned and stored in the
uid variable. The details of the findConversion method are discussed in
Section 5.3.3.3.

Using uid the source–target map for the conversion is retrieved from
mapPerConversion hash-map (line 4). zamk checks if there is a source–
target entry in the conversion map for the given source object, i.e. if the
source object has been converted before using this conversion. If this is
true, then the corresponding target object is retrieved and returned. Oth-
erwise the request triggers a new conversion, then the invokeConversion

method is called with the uid and the source object to create a new target
object. The new source–target pair is added to the map and the target
object is returned.

Procedure 3 The getConvertedValue method
1: procedure getConvertedValue(source, targetType)
2: sourceType source.Class

3: uid findConversion(sourceType, targetType)

4: map mapPerConversion.get(uid)

5: if source 2 map then

6: return map.get(source)
7: else

8: target invokeConversion(uid, source)

9: add (source, target) to map

10: return target

11: end if

12: end procedure
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5.3.3.3 Finding a Conversion

The findConversion method used in Procedure 3 implements an algo-
rithm, which uses type information to find the closest conversion among
eligible conversions for the given source type and the expected target
type.

Given a conversion request from type X to type Z, the requirements
for an an eligible conversion are as follows:

E-1 The conversion source type is exactly the same as or is a super type
of type X and,

E-2 the conversion target type is exactly the same as or is a sub type of
Z type.

The closest conversion is characterized as follows:

C-1 Among eligible conversions its source-type is the closest to the ac-
tual type X object given in the conversion request.

C-2 Among the eligible conversions with the same source-type proxim-
ity, its target-type is the closest to the Z type given in the conversion
request.

Let us clarify these descriptions with an example. Figure 5.7 shows
two separate hierarchies that represent different classifications for ani-
mals. Conversions are defined between the types of these hierarchies.
Consider the conversion request getConvertedValue(largeMammal,
Vertebrate.class). According to our description of the eligible conver-
sions, we can check each conversion to determine if they are in fact
eligible. Starting from the bottom of the figure:

• The L2W conversion converts from LargeMammal to WarmBlooded. Since
the type of the source object (LargeMammal) exactly matched the con-
version’s source type (LargeMammal) it satisfies E-1, since the tar-
get type of this conversion is WarmBlooded which is a sub-type of
Vertebrate, the conversion also satisfied E-2. Hence we conclude
that the conversion is eligible.

116



5.3 the zamk framework

0DPPDO

/DUJH0DPPDO

([WHQGV

0�9

6RXUFH 7DUJHW

9HUWHEUDWH

:DUP%ORRGHG

([WHQGV

&RQYHUVLRQ

/�:

0�:

Figure 5.7: Two type hierarchies for representing animals and conversions be-
tween them

• The conversion M2W satisfies the E-1 since Mammal is a super-type of
LargeMammal, it also satisfies E-2 since its target type WarmBlooded is
a sub-type of Vertebrate.

• Similarly to M2W the conversion M2V satisfies E-1 since its source type
Mammal is a super type of LargeMammal and its target type Vertebrate

is exactly the same as the target type given in the conversion re-
quest, satisfying E-2.

From this analysis we conclude that all three conversions are eligible
for this conversion request.

Conversion Source Target

L2W 0 1

M2W 1 1

M2V 1 0

Table 5.1: The type distances of conversion’s source–target types to the
source–target types given in the conversion request getConverted-
Value(mammal, WarmBlooded.class)
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To identify the closest conversion, we look at the hierarchical distances
of the conversion types to the types given in the conversion request. For
this example the distances are listed in Table 5.1. Even though L2W and
M2V have the same combined distance, the closest conversion is L2W since
closeness of the source type has priority while deciding on the closest
conversion. The information of the conversion comes from the source
object. For a conversion to be more accurate, the type of the given source
object should be as close as possible to the source type it converts from,
i.e the source object should be as specialized as possible. That’s why
the closeness check prefers the closeness of the source type over the
closeness of the target type.

These operations are implemented in findConversion; pseudo code is
shown in Procedure 4. The procedure starts by creating an empty list
named eligibles which contains the eligible conversions. In order to
determine these conversions, we first need to find the super types of the
source type by walking their type hierarchy. This is done by the method
getAllSuperTypes which uses reflection to populate the full set of super
types (classes and interfaces) of a given type. On line 3 this method is
called and the returned list is stored in superTypeSource. Note that
when the java.lang.Object is passed as an argument to this method, the
result contains the single element java.lang.Object.

The while loop (lines 4– 16) iterates over the superTypeSource set and
checks if that source type is associated with any conversions; the if state-
ment on line 5 checks if sourceMap’s key set contains the sourceType.
When this expression evaluates to true, zamk retrieves the candidate con-
versions from the sourceMap and store them into the list candidates
(line 6). The candidates list contains the IDs of the conversions that are
applicable to the sourceType. The conversions pointed by candidates

only satisfy the source type criteria of an eligible conversion, therefore
we still need to check the target types of these conversions to detect if
they are indeed eligible. This detection is done in the for loop on lines 7–
12. For each unique id in the list candidates, we retrieve the correspond-
ing conversion from the conversionMap (line 8) and store it into the
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Procedure 4 The procedure for finding the most suitable conversion
1: procedure findConversion(sourceType, targetType)
2: eligibles empty list
3: superTypesSource getAllSuperTypes(sourceType)

4: while superTypesSource.hasNext do

5: if sourceType 2 sourceMap.keySet then

6: candidates sourceMap.get(source)
7: for all id 2 candidates do

8: conversion conversionMap.get(id)
9: if conversion.getTargetType ⇢ targetType then

10: eligibles.add(id)
11: end if

12: end for

13: else

14: sourceType superTypesSource.next
15: end if

16: end while

17: if eligibles = ; then

18: Runtime Exception, no conversions found
19: else

20: found  findClosest(eligibles, sourceType, targetType,

superTypesSource)

21: end if

22: if found.size > 1 then

23: return resolvePrecedence(found)

24: else

25: return found(0)

26: end if

27: end procedure
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variable conversion. Then we check if the target type of this conversion
is a sub-type of the targetType passed to the conversion request (line 9).
If this expression is true then we add the id of the conversion to the list
of eligibles.

When the if statement on line 5 evaluates to false, then we set the vari-
able sourceType to the next element in superTypesSource and reiterate
the process until there are no more elements left in superTypesSource.
At the end of this iteration, we obtain a list of eligible conversions stored
in eligibles.

The next operation is to find the closest conversion from this list. First
we check if the list eligibles is empty (line 17); if it is an empty list then
we throw a runtime exception, indicating there are no suitable conver-
sions found for the given source and target types. If the list is non-empty
then we invoke the method findClosest (line 20) and store the returned
conversion id values in the variable found. It is possible that there are
more than one equally close conversions for a given request, if this is
the case we invoke to resolvePrecedence method (line 23) and return
the value obtained from this method. If the resolvePrecedence method
cannot resolve the ambiguity in the found list then it throws a run-
time exception, indicating there is not enough information to resolve the
precedence. If the findClosest method returns a single conversion then
we simply return the first element of the list found.

findclosest method This method finds the closest conversion from
the list of eligible conversions. In order to perform this task, the method
takes the eligibles list, source and target types and the lists of their super
types as an argument. The method creates the table shown in Table 5.1
for each eligible conversion, and decides on the closest according to the
closest conversion criteria given at the beginning of this section.

resolveprecedence method When findClosest method finds mul-
tiple equally close conversions for a conversion request, the
resolvePrecedence method is invoked. The task of this method is to pro-
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cess the precedence information given during compile-time and decide
which of the conversions should be applied to a conversion request.

5.3.3.4 Target Object Creation and Retrieval

In Section 5.3.3.2 we have mentioned the steps taken after a conversion
is found. In this section we discuss these steps in detail.

We show a partial pseudo code of the getConvertedValue in Proce-
dure 3. When the findConversion method returns a conversion id, we
use it to retrieve the map for that conversion. Then we check if the map
contains the source object, if it does we return the target object, associ-
ated with this source. This operation is called target object retrieval. By
having this operation, we ensure that the state of a conversion is pre-
served, similar to an object adapter inferring its state from its adaptee.

If the source object was not converted before with the found conver-
sion, we need to create a new source–target pair. To do this we must
call the invokeConversion method, which reflectively invokes the convert
method of the found conversion. The source code for this method is
given in Listing 5.11. The argument uid is used to retrieve the conver-
sion from the conversionMap (line 2). A Conversion object contains the
fully-qualified name of the converter it is contained in and the names
of the convert and update methods. We first create a Class object for
the converter that contains the conversion (line 3). After constructing
an array for argument types of the convert method (line 4), the convert
method for the converter is loaded from the Class converter (line 5). The
retrieved method is invoked by calling the invoke method and passing
on the argument source (line 6). The result of the method invocation is
returned.

1 public static <T, U> T invokeConversion(String uid, U source) {

2 Conversion conversion = conversionMap.get(uid);

3 Class converter = Class.forName(conversion.getConverterName());

4 Class[] argTypes = new Class[] { source.getClass() };
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5 Method convert =

converter.getDeclaredMethod(conversion.getConvertMethod(),

argTypes);

6 return (T) convert.invoke(null, source);

7 }

Listing 5.11: The invokeConversion method which reflectively invokes the
convert method of a given conversion

5.3.3.5 Object Synchronisation

The source–target pairs kept in the conversion maps are maintained by
conversion aspects. We have previously discussed the structure and the
members of these aspect in Section 5.3.2.4. A conversion aspect contains
a pointcut (updateObserver) which monitors all of the changes made to
the objects of source type. When this pointcut matches, the changed
object is bound. The after advice that uses this pointcut, looks at its
source–target map to check if the map contains the bound object as a
key. If this is the case, then the corresponding target object is updated by
creating a new object of target type and passing the values of the newly
created object to the existing target object. The copying of the values is
performed by the update method of the conversion.

5.3.3.6 Runtime API

zamk runtime API offers two overloaded methods to access its function-
ality.

• getConvertedValue(U source, Class<T> targetType) : This method
invokes the fully-automated functionality of zamk. The runtime
steps mentioned in the sections before take place, and the con-
verted value is returned.

• getConvertedValue(U source, Class<T> targetType, String using) :
Calling this method is equivalent to adding a using clause in Gluer.
The String argument should be the fully-qualified name of the
conversion. In this method the findConversion is not called.
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The runtime API is useful when the developer does not wish to use
an external language for DI. The usage of the runtime API makes the
dependency explicit but the developer can use it anywhere in the code.
The DI mechanism can only create dependencies in the constructor of
the object or in the setter methods.

The two provided methods are static methods, so they can be used by
referring to the zamk runtime as shown in Listing 5.12.

1 public void zamkAPIcalls(TypeA typeA)

2 {

3 TypeB typeB = ZamkRuntime.getConvertedValue(typeA, TypeB.class);

4 TypeB typeBUsing = ZamkRuntime.getConvertedValue(typeA,

TypeB.class, OtherTypeAtoTypeBConverter.class.getName());

5 }

Listing 5.12: Using zamk API in the implementation

In this example we have used the getName() method of the Java Class

interface to get the qualified name for the desired converter. This imple-
mentation will give a compilation error if the class does not exist; this
way we can eliminate the problem of type checking that comes with
using a String. If the referred type given as the using parameter does
not contain a method for the conversion, then the developer will see a
RuntimeException which informs the developer about cause of the error.
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6
ZAMK : D I S C U S S I O N

In this chapter we discuss the applicability of zamk to real-life cases by
means of a repository analysis. We follow by presenting related work
and conclude with our final remarks.

6.1 applicability of zamk

We performed repository mining using the Boa platform [dye13] to find
open source Java projects that have applied the Adapter pattern for
(unanticipated) integration of an independently developed component.
Boa indexes SourceForge projects and allows querying the revision data
in the projects’ version control systems. The search was performed by
looking at commit messages that hinted at the introduction of the Adapter
pattern for integration purposes. The full Boa query can be seen in list-
ing 6.1.

1 counts: output collection[string][int] of string;

2 p: Project = input;

4 when (i: some int; match(‘^java\$‘,

lowercase(p.programming_languages[i])))

5 when (j: each int; def(p.code_repositories[j]))

6 when (k: each int;

match(‘adapterintegrationpluggablebindingdependency
injectionwrapperlegacy componentlegacy systemlegacycomponent‘,
lowercase(p.code_repositories[j].revisions[k].log)))
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7 counts[p.code_repositories[j].url][p.code_repositories[j]
8 .revisions[k].id] << strreplace(strreplace(p.code_repositories[j]
9 .revisions[k].log, ‘‘\r’’, ‘‘\\r’’, true), ‘‘\n’’, ‘‘\\n’’, true);

Listing 6.1: The query script for Boa.

The query resulted in 52712 revisions in total, which we have manually
inspected further until we have identified two projects that actually have
performed an unanticipated integration of the Adapter pattern.

A first example where the Adapter pattern was not used initially is
Argo1, a JSON parsing library. At revision 20 the developers added an
adapter for integrating it with a SAX parser and a JDOM parser. Looking
at the source code changes in Argo when these adapters are introduced,
we see that it was a manual process: the client of the library has to
initialise the adapter itself and pass it to the actual parser. To make this
possible, the source code of the parser itself needed changes as well.
After this change though, using another adapter is now quite trivial,
since the way the client has to supply the adapter is a nice example of
basic DI.

A downside of the approach taken in the Argo project is the need to
update the source code in order to integrate adapters. The current im-
plementation of Gluer language only supports injection into fields, while
in Argo the dependency is introduced in terms of a method argument.
However, as we have discussed before Gluer is extensible with new in-
jection points, such that code manipulation can be avoided with an ex-
tended Gluer. By using Gluer, intertwining the core parsing logic with
the integration logic can be prevented.

Second, the project TimeLog Next Generation2 was also found using Boa.
It is a tool used to track time spent on different tasks, and it is imple-
mented on top of the Eclipse Framework. It uses Eclipse’s AdapterManager

in order to integrate the TimeLogNG data model classes into Eclipse, us-
ing adapters that let Eclipse know how to display the model classes.
Listing 6.2 shows how the registration is done programmatically.

1 http://sourceforge.net/projects/argo/
2 http://sourceforge.net/projects/timelogng/
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1 public void init() {

2 delegate.registerAdapters(new SimpleWorkbenchAdapterFactory(

3 new ClientAdapter()), Client.class);

4 delegate.registerAdapters(new SimpleWorkbenchAdapterFactory(

5 new ProjectAdapter()), Project.class);

6 delegate.registerAdapters(new SimpleWorkbenchAdapterFactory(

7 new TaskAdapter()), Task.class);

8 delegate.registerAdapters(new SimpleWorkbenchAdapterFactory(

9 new DefaultTreeSetAdapter()), TreeSet.class);

10 delegate.registerAdapters(new SimpleWorkbenchAdapterFactory(

11 new DefaultListAdapter()), List.class);

12 delegate.registerAdapters(new SimpleWorkbenchAdapterFactory(

13 new PeriodAdapter()), Period.class);

14 }

Listing 6.2: TimeLog registering its adapters.

The init method in the listing is called when the Eclipse Framework
is started. A delegate is called to register adapter factories for each type
of model class (e.g. Client and Project). The delegate is actually the
AdapterManager from Eclipse, whereas the factory (i.e.
SimpleWorkbenchAdapterFactory) and the adapters are from TimeLogNG
itself.

In this example, registering and using the adapters is done impera-
tively, as was evident in listing 6.2. This means that if no suitable adapter
is available at some point, this is only discovered at runtime. Since zamk

is also a DI framework and is declarative instead of imperative, it finds
such issues before the application is run. This has a huge advantage and
shows the strength of our solution. Moreover, our framework would
also remove all of the intertwined boilerplate code, such as registering
the adapters and retrieving an adapted object.

6.2 related work

The zamk framework provides the means to use two component inte-
gration methods together; these are adaptation and DI. In the literature
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these two approaches have been researched separately; to the best of our
knowledge there is not one work that combines the two. However there
are studies which are parallel to our work; in this section we will give a
background on such similar studies.

In [Gsc12], Gschwind proposes a type-based adaptation framework
for adapting component interfaces. An adapter concept called compo-
nent adapters is introduced, similar to our work a repository of adapters
(in our case conversions) is used. This approach uses traditional adapters
as the underlying mechanism and provides meta-information about when
to use such adapters. The goal of this work is to provide automatic adap-
tation of components which can be used with component models such
as CORBA [Vin97], Enterprise JavaBeans [RB10] etc. This work does not
provide a thorough solution to provide automatic adaptation like zamk

does, however it provides a way to compose adapters together, which
zamk does not offer.

Mezini et al. discuss so-called Composite Adapters [MSUL99], which
are a group of concrete adapters that work together. The authors pro-
pose to extend OOP languages with constructs that make such com-
posite adapters available to source code that tries to use incompatible
types, which are then implicitly adapted using the available composite
adapters. Among these proposed constructs, are keywords that explicitly
lift or lower objects to another type, whenever multiple adapters can re-
solve a type incompatibility. zamk also chooses which conversion to use
implicitly (unless explicitly given with the using keyword). A common
goal of of our work and Composite Adapters is to provide non-intrusive
techniques for component integration.

In [HA09] Hummel et al. identify parallel challenges to the challenges
we have identified. They introduce a new type of adapter called Managed
Adapter which contains a hash table of adaptees and the adapted target
objects. The client uses this class to retrieve adaptees or adapted objects.
Although this approach claims to be non-intrusive, still dependencies to
new types (i.e. managed adapters) are introduced. Also this approach
does not provide an on-the-fly adaptation mechanism as zamk does.
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Cámara et. al [CCCM07] describe a semi-automatic and non-intrusive
approach for supporting commercial off the shelf components’ compo-
sition and evolution. Similar to zamk’s conversion repository, this work
makes use of a mapping repository which contains the message map-
pings between components. The adapter manager uses these mappings
to generate adapters [BBC05], which are kept in an adapter repository.
In this work the authors use AOP to intercept messages between com-
ponents. This approach is similar to zamk in terms of using a repository
of adapters which are managed by aspects. However the approach relies
on adapter generation and method interception which adds complexity
to the management of the integration.

The Scala language [OSV08] contains a feature called views. A view
is an implicit conversion which is implemented as a method that takes
one type as parameter and returns an object of another type. Such a
method is defined with the implicit keyword; it is type-checked and
implicitly applied by the compiler. This language feature is very similar
to what we are trying to achieve by creating conversions and applying
them implicitly when a source object is injected to a target field. However
implicit conversions in Scala do not maintain the link between the source
and the target objects, i.e when the target object is created, its state is not
affected by the change in the state of the source object.

The Eclipse Framework also has an adapter repository managed by
an Adapter Manager [Bea08]. Adapter Manager has methods to register
adapter factories with the target and adaptee types. This registration of
adapter factories can also be done declaratively in a configuration file.
Adapter Manager is also used to retrieve the suitable adapter factory,
based on the object and the expected interface. Eclipse’s adapter man-
agement offers a more dynamic approach than zamk, however it lacks
the important checking features that zamk provides.

There are numerous aspect-oriented dynamic adaptation approaches
[YCS+

02, Ost02, PS04]. The zamk is also related to such approaches since
the conversions are performed by aspects. These approaches focus on
self-adaptive software where the components are introduced or removed
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during runtime. In the zamk framework the dependencies are declared
at design-time so automatic adaptation is currently not supported. We
will discuss a possible extension in Chapter 7 as future work.

We have also used DI [Fow04] in zamk. DI has close connections with
aspect-orientation. Google Guice [Van08, Goo13] uses AOP to support
method interception in order to complement DI. In Guice developers
must use the @Inject annotation in the source code, therefore changing
the code. Chiba and Ishikawa introduce GluonJ [CI05] to provide an AO-
language for DI and the implementation of glue code. In zamk we have
used AOP to manage the source-target pairs, where the target object is
the result of a conversion and is injected to a target field.

6.3 conclusion

In this part we have introduced zamk, which is an adapter aware DI
framework. zamk provides an external language for DI, called Gluer and
it uses under-the-hood adaptation logic for implicitly performing adap-
tations before an object is injected to a target field. Gluer provides a
declarative way of defining dependencies between types; since it is an
external language no changes in the actual source code are needed for
injection. Gluer has its own checking mechanism, which informs the user
of possible errors such as non-existent targets, methods or conversions.
zamk has its own adaptation mechanism called conversions. Conver-

sions are declared in regular Java classes which are declared to be con-
verter classes with an annotation. The zamk runtime is responsible for
creating a repository of conversions which are then applied to source
objects to obtain objects of the target type. Conversions are declared
in converter classes which contain one or more pairs of convert–update
methods. It is also possible to declare two-way conversions by providing
two sets of convert–update method pairs. The well-structured definition
of converters allows the developer to focus the implementation efforts
on what is necessary to perform an adaptation. Converters are concise
and light-weight structures that encapsulate the adaptation concern.
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zamk keeps track of the source–target object pairs inside aspects, which
are generated for maintaining the state relationship between such pairs.
This provides a non-intrusive way of maintaining the conversion object’s
state by monitoring the source object via set methods. We have made use
of the Java generics support in AspectJ to create a generic aspect which
is reused by each generated aspect.

The added benefit of using zamk is, while defining dependencies be-
tween components, zamk can implicitly create the compatible object, by
using predefined conversions. In this chapter we have shown that a con-
version is a light-weight concept and it does not suffer from the impedi-
ments caused by the programming language properties which affect the
adapter pattern. We have also shown that a traditional object adapter
can also be implemented as a converter, thereby allowing the developer
to make use of the adapter pattern. zamk’s automatic adaptation mecha-
nism saves the developer from the (often domain-specific) knowledge of
which adapter to use. The conversions can be implemented by another
developer which has the knowledge to convert from one type to another,
and the binding of components can be implemented in Gluer by a de-
veloper who is knowledgeable in how to integrate certain components.
Using the zamk the developer only needs to refer to the source and tar-
get types; i.e. she does not need to refer to an intermediate adapter type.
This feature also reduces the number of type dependencies used in the
integration code.

Overall zamk provides a flexible and a non-intrusive approach to es-
tablish dependencies between components. Using zamk framework the
development of the integration code is less error-prone and resulting
integration code is more maintainable than the traditional approaches
discussed in this part.
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F I N A L R E M A R K S





7
C O N C L U S I O N A N D F U T U R E W O R K

In this chapter we summarise our contributions, discuss the current sta-
tus of the presented work and elaborate on future directions.

At the beginning of the thesis we have defined two problem state-
ments. In the proceeding chapters we have presented solutions to each
of these problems.

• In legacy systems the exposed context is not always sufficient for
integrating new functionality. We have identified a need for select-
ing objects according to their participation in certain events, which
are of interest to the new functionality. We have shown a solution
for this problem in Chapter 3.

• In order to integrate new software, late in the software life-cycle,
we may need adaptations to establish a common interface between
the legacy software and the new software. To do this, often a third
adapter type is introduced into the programs, increasing the num-
ber of dependencies. The approach in Chapter 5 presents a solution
for this problem.

7.1 instance pointcuts

In Chapter 3 and Chapter 4 we have introduced a novel AO language fea-
ture called instance pointcuts. Instance pointcuts aim to solve the prob-
lems related to life-cycle-based bookkeeping of objects. In software, the
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life-cycle changes occur when an object participates in an event; however
these changes are often implicit. To offer better support for processing
objects according to their life-cycle phases, instance pointcuts are used
to declare the beginning and the end of a life-cycle as events. Instance
pointcuts are reusable constructs, which can be refined by type or events
and they can be composed using set operations. The declarative nature
of instance pointcuts gives rise to several compile-time checks which are
not automatically possible with equivalent imperative code.

In this chapter we have explained the details of the instance pointcuts
approach by giving the syntax and semantics for using this language
mechanism. We have also introduced a prototype for instance pointcuts
as an extension to AspectJ, however the concept itself is applicable to
any AO-language.

Instance pointcuts are transformed into general-purpose code by means
of code generation. Our goal was to support modular compilation, to
this end we have generated code that uses the ALIA4J. Due to the mod-
ular architecture ALIA4J provides, we were able achieve this goal.

We have shown the benefits of using instance pointcuts with two exam-
ples. We have applied the instance pointcuts approach to a real-life case
study the github android application and showed improvement in code
quality. In the second example we applied instance pointcuts to program
comprehension domain to create meaningful runtime categories. In both
of these studies we have shown that instance pointcuts is a versatile con-
cept which is beneficial to use when categorising objects.

Future Work

As future work, our first goal is to use instance pointcuts in a real-life
medium size code base and analyse the benefits of this approach better.
To do this, first we will determine the bookkeeping code in the software
and replace it with instance pointcuts. This refactoring work will shed
light on how this new modularisation mechanism improves software. In
the next steps of we will analyse several software evolution scenarios to
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better illustrate the benefits of the reusability properties instance point-
cuts offer.

Our current implementation of the instance pointcuts is based on As-
pectJ. We would like to implement instance pointcuts as an extension
to other AO-languages, for example the event-based language described
in [BMAK11]. In this we study we would like to understand how the
underlying language can improve the instance pointcut expressiveness.

It is interesting to combine instance pointcuts with Object Query Lan-
guages (OQL). OQLs are used to query objects in an object-oriented pro-
gram (e.g., [Clu98]). OQLs do not support event based querying, which
selects objects based on the events they participate in, as in instance
pointcuts. For example instance pointcuts can be used as a predicate in
OQL expressions, in order to select from phase-specific object sets.

7.2 zamk: an adapter-aware dependency injection frame-
work

In Chapter 5 and Chapter 6 we have introduced an adapter-aware de-
pendency injection framework called zamk. In this work our aim was
to maintain loose-coupling while establishing interoperability between
software parts. We have identified many problems with the traditional
adapter pattern which is usually the solution to interface incompatibility.

We have created the zamk framework as an attempt to remedy the prob-
lems with software integration at the object level. The zamk framework
provides an external dependency-injection language called Gluer and a
runtime which implicitly performs adaptations between the injected ob-
ject and the target of the injection. Gluer is a declarative language which
provides a readable format and meaningful keywords for defining de-
pendencies. When declaring a dependency in Gluer, one does not have
to provide type compatibility between the source object and the target
field, since it will be handled by zamk later. Therefor Gluer provides a
more flexible way of declaring dependencies.
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We have also created the concept of conversions, which can be used
in place of or accompanying traditional adapters. Conversions are light-
weight constructs which consist of a convert–update method pair. Con-
vert methods are responsible for converting an abject of the source type
to a corresponding object of the target type. The update methods are re-
sponsible for maintaining the value of the created target object, should
the state of the source object change. The relationships between these
source and target objects are maintained by conversion aspects, which
are generated during compile-time from conversion definitions. The ben-
efit of conversions is that their simple and well-structured definition al-
lows the developer to focus the implementation efforts on what is neces-
sary to perform an adaptation.

Overall, zamk succeeds in providing the developers with an extensive
framework for component integration. Using zamk framework the devel-
opment of the integration code is less error-prone and resulting integra-
tion code is more maintainable than the traditional approaches.

Future Work

Currently zamk does not support chained adaptations; i.e. multiple levels
of conversions to obtain an object of the target type. We would like to
include this feature in order to make the conversion more reusable. This
type of chaining can be type based only and can entail finding the right
sequence of converters to call within each other. Precedence information
can still be used to select the conversions that will be used in the chain.

Using instance pointcuts with zamk we can also further improve the
software integration process. In this co-operation, instance pointcuts can
provide a set of source objects, which are selected according to their life-
cycle phase. Then these specific set of objects can be used for conversions,
which will provide a fine-grained mechanism to only adapt and inject
relevant objects. This idea is discussed in [HBA12] by us, where we used
a different methodology for adaptation.
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